

David Piggott - Heavy Sleeper’s Alarm Clock

1 init:

2

 pause 500

3 serout 6,N2400,(254,1)

4 pause 30

5

6 i2cslave %11010000, i2cslow,

i2cbyte

7

8 symbol UP = pin1

9 symbol DOWN = pin0

10 symbol SET = pin7

11 symbol BACK = pin6

12

13 symbol fademins = b0

14 symbol fadeintensity = b0

15 symbol dismissmins = b1

16 symbol dismissbeepcounter = b1

17

18 symbol fadepause = w1

19 symbol dismissloopcounter = w1

20 symbol dismisslooplimit = w2

21

22 symbol seconds = b0

23 symbol mins = b1

24 symbol hour = b2

25 symbol day = b3

26 symbol date = b4

27 symbol month = b5

28 symbol year = b6

29 symbol alarmmin = b7

30 symbol alarmhour = b8

31 symbol fullweekalarm = b9

32 symbol fanenable = b10

33

34 symbol setupseconds = b0

35 symbol setupmins = b1

36 symbol setuphour = b2

37 symbol setupday = b3

38 symbol setupdate = b4

39 symbol setupmonth = b5

40 symbol setupyear = b6

41

42 symbol setupalarmmin = b0

43 symbol setupalarmhour = b1

44 symbol setupfullweekalarm = b2

45 symbol setupfademins = b3

46 symbol setupdismissmins = b4

47

48 symbol digit = b11

49 symbol value = b12

50 symbol maxvalue = b13

51

52 poll:

53 readi2c $08,

(alarmmin,alarmhour,fullweekalarm,fademins

,dismissmins)

54 poke 93,fademins

55 poke 94,dismissmins

56 readi2c $00,

(seconds,mins,hour,day,date,month,year)

57

58 if SET = 1 then setup

59 if UP = 1 then

60 if fanenable = 1 then

61 let fanenable = 0

62 low 7

63 serout 6,N2400,

(254,128,"Fan disabled!")

64 pause 2000

65 else

66 let fanenable = 1

67

 high 7

68 serout 6,N2400,

(254,128,"Fan enabled!")

69 pause 2000

70 endif

71 endif

72

73 if day = 7 or day = 1 then

74 if fullweekalarm = 1 then

75 if mins = alarmmin

and hour = alarmhour then goto wakeup

76 endif

77 else

78 if mins = alarmmin and

hour = alarmhour then goto wakeup

79 endif

80

81 clock:

82 serout 6,N2400,(254,192)

83 gosub printdate

84 serout 6,N2400,(254,128)

85 gosub printtime

86

87 goto poll

88

89 lamp:

90 readadc10 2,w4

91 pwmout 3,249,w4

92 return

93

94 printtime:

95 gosub lamp

96

97 let digit = hour & %00110000 /

David Piggott f00n DS4 (dreamsystem four)

David Piggott - Heavy Sleeper’s Alarm Clock

2

Contents

Project Outline 4 Development - BCDs and Programming 57

Time Plan 5 Development - Lamp Dimming 62

Task Analysis 6 Development - Putting it all together (Programming) 63

Research - Existing Products 10 Development - Final Breadboard Program 86

Research - Electronics - Processing 10 Research - Electronics - Input (Control) Components 96

Research - Electronics - Output

(Wake-up Call) Components

15 Research - Electronics - Output (Wake-up Call) Compo-

nents

100

Research - Electronics - Output

(Control) Components

17 Research - Electronics - Power Supply Components 102

Specification 20 Production - Schematic 1.0 103

Initial Circuit Ideas - System Dia-

grams

22 Production - Artwork 1.0 104

Initial Casing Ideas 26 Production - Artwork 1.0 (Colour Coded) 105

Development - Breadboarding &

Programming

27 Production - Schematic 2.0 106

Development - Progress Review 48 Production - Artwork 2.0 107

Development - A Programming

Revelation

49 Production - Artwork 2.0 (Colour Coded) 108

Development - False Assumptions 52 Production - PCB 1.0 from Artwork 2.0 109

David Piggott - Heavy Sleeper’s Alarm Clock

3

Contents

Production - Testing PCB 1.0 110 Case Development - Side Profile 122

Production - Schematic 3.0 111 Case Production 123

Production - Artwork 3.0 112 Final Program - Cutting down the bits 127

Production - Artwork 3.0 (Colour

Coded)

113 Final Program 133

Production - PCB 2.0 from Artwork 3.0 114 Finished Product - Pictures 144

Production - Testing PCB 2.0 115 Time Management - Diary 146

Production - Schematic 4.0 116 Evaluation & Testing 148

Production - Artwork 4.0 117 Industrial Practices, Social Issues, Systems & Control 155

Production - Artwork 4.0 (Colour

Coded)

118 Bibliography & Conclusion 157

Production - PCB 3.0 from Artwork 4.0 119 Appendix A (Datasheets, Sample Program Thread) 158

Case Development - Design Overview 120 Appendix B (Case Dimensioning Sketches, Program

planning)

221

David Piggott - Heavy Sleeper’s Alarm Clock

4

What is the aim of the project?
The aim of the project is to make a specialised alarm clock for heavy sleepers, who cannot rely on typical alarm clocks.

What makes the project special?
I intend to design the alarm so that it is capable of waking even the heaviest of sleepers. However, unlike most alarm clocks aimed at heavy

sleepers it will not do so by simply being very loud.

The wake-up call will have two phases. The initial phase will have a gradually increasing intensity to it.

The purpose of this ‘soft’ mode is to simulate a natural dawn as well as possible. The reason for this is that I believe being slowly woken over a

period of ten to twenty minutes is surely better than a sudden disturbance (see below for justification).

The second phase of the wake-up call is a backup of sorts and will be as unpleasant and spontaneous as is necessary to wake the user from

their sleep. An example would be a high intensity light flashing on and off.

These principles will applied to the use of all the output components I equip the alarm clock with.

With regard to timing, I will aim to make as many aspects of the wake-up call as is practical user configurable so that the wake-up call can be

tailored to the individual user (for example, the time taken during the first phase for the intensity to reach maximum).

Why is a gentle wake up better?
Generally speaking most people are irritated by being suddenly awoken and instinctively close their eyes. In doing so they drastically increase

the risk of falling asleep again.

I believe that this problem can be overcome by slowly increasing the intensity of the components of the wake-up call.

Project Outline

David Piggott - Heavy Sleeper’s Alarm Clock

5

Time Plan

David Piggott - Heavy Sleeper’s Alarm Clock

6

• How will the alarm clock wake the user up?

• The most obvious method is a noise of some sort, as the majority of alarm clocks use.

• However this is not the only means by which the alarm clock can wake users up; it is an alarm clock for heavy sleepers and thus

must have some backup.

• Keeping in mind that I decided the alarm should start gently and only turn assertive if not dismissed after some time, one ideal

output would be a lamp that fades in over a period of several minutes, to simulate sunrise.

• A lamp that fades in slowly is therefore an ideal way to get around this problem.

• In addition to a lamp, another possible output is a fan, to simulate a breeze and wake the user up, that gradually increases in in-

tensity in the same way as the lamp.

• How will the real time, alarm time, and other information be displayed?

• There are three options for this; 7-Seg displays, Starburst displays, or an LCD.

• The main advantage of 7-Seg displays is their good visibility both in light and dark conditions. However they can only display one

numeric character each and require additionally driver circuitry. This would limit the information that I could display with them,

and would restrict the options I have when designing the setup and configuration system due to the lack of ability to display text.

The driver circuitry would probably require several output pins from the microcontroller for each module, and since I would need

a minimum of four just to show the hour and minutes I would most likely exceed the number of output pins available on the mi-

crocontroller unless I was to find a serial driver.

• Starburst displays also offer the advantage of good visibility while also being able to display non-numeric characters. However they

require more complicated driver circuitry. Because one display is required for every character I would have to use a great number

of them to allow me to create the setup and configuration system I have in mind. They would probably also require a great num-

ber of output pins on the microcontroller unless I was to find a serial driver.

• LCDs do not have the problems that 7-Seg and Starburst displays do; they can print every character I would need and depending

on the specific display chosen can be very easy to control with the PICAXE microcontroller system. In addition to this they are mul-

tiple character devices, which would enable me to create the setup and configuration system I have in mind (individual, titled

menu screens) and display information such as the day, date, month and year.

• For the reason outlined above the real time, alarm time and all other information will be displayed with an LCD.

Task Analysis

David Piggott - Heavy Sleeper’s Alarm Clock

7

• How many alarm times will the alarm clock support?

• The alarm clock only needs to support one alarm time. There is no point adding unnecessary complexity in both the development

of the product and for the end user in controlling it.

• How will the various settings be changed (real time, alarm time, fade-in time etc.)?

• A basic system would be one where for every user configurable value there is a separate button; pressing the button increases the

value (e.g. the real time hour) until it reaches its maximum (23 in the case of hours) and thereupon loops back to 0. A slight varia-

tion on this theme would the addition of a down button for each value to enable easier decrementing. This system is basic in that

the user doesn’t depend on feedback from the alarm clock (e.g. knowledge of which setting they have selected for change [i.e.

“Setting: Hour”]) other than being able to see what the value actually is (e.g. 23).

• The other option would be a system where there is only one increment/decrement input pair and this is used for the setting of all

the user configurable values (e.g. real time hour, real time minute, real time second... alarm time hour… fade-in time etc.). With

this system the user must first select which value they wish to change.

• For this to work effectively the user must have a means of knowing which configurable value they have selected to change. The

ideal way of communicating this to them is by printing the name of the value being edited on the LCD.

• In order to select the values for changing a minimum of one additional button will be required which I will call the ‘set’ button.

• I will explore different ideas for the user interface in greater depth when I create my system diagrams.

• What options will be available during the wake-up call?

• Most alarm clocks have a snooze and dismiss button. However, I believe the snooze button is only necessary when the user has

been woken too quickly. This should not happen with the gentle fade-in of my alarm clock and since pressing the snooze button

only results in the user getting up later, I will give the users that option.

• Choosing whether to include a dismiss button is harder. The main reason for not including one is to prevent abuse, i.e. the temp-

tation to just press the dismiss button and go back to sleep.

Task Analysis

David Piggott - Heavy Sleeper’s Alarm Clock

8

• However, without any means of dismissing the alarm it would just continue with the wake-up call indefinitely. This is clearly a

problem; the alarm clock must be dismissed somehow. I have come up with two possible solutions to the problem:

1. Allowing the user to dismiss the alarm clock but requiring that in order to so they first of all get out of bed (and therefore

drastically reducing the probability of them going back to sleep again). The simplest way of doing this would be to have the

dismiss button separate from the main unit and placed on the other side of the room.

2. Not allowing the user to dismiss the alarm clock while the wake-up call is running but instead allowing them to set an auto-

dismiss time (via one of the setup menu screens). The wake-up call would then be as follows:

• Wake-up call runs phase one, fading in the lamp and fan over the period specified by the fade-in time setting.

• After fade-in time has elapsed, wake-up call enters phase two (intensive mode) and runs for the amount of time speci-

fied by the auto-dismiss time setting.

• When auto-dismiss time has elapsed, the wake-up call automatically dismisses.

• In conclusion the alarm clock will have neither snooze nor dismiss buttons and instead will automatically dismiss after a user con-

figurable period.

• How will visibility and the ability to control it in the dark be achieved?

• The important parts which should be visible in the dark are the control components; that is, the LCD and the setup menu buttons.

• In order to make the LCD visible in the dark I hope to use a backlit LCD.

• In order to make the setup menu buttons visible in the dark I could use illuminated buttons, or use standard buttons and place an

LED alongside each button.

• I will need to research both backlit LCDs and illuminated switches.

• Will it be battery or mains powered?

• The lamp that will simulate dawn will need to have a high maximum intensity. However because it needs to be dimmable I cannot

use energy saving lamps as they have a threshold below which they do not operate; thus I am restricted to filament lamps. The

problem with filament lamps is that have quite high current requirements and are less efficient.

• As such, if I was to make the alarm clock battery powered it would need a very high capacity battery in order last a reasonable

length of time.

Task Analysis

David Piggott - Heavy Sleeper’s Alarm Clock

9

• For this reason the alarm clock will have a mains power supply. However since the electronics will require low Voltage DC power,

and for the purposes of safety, I will use a mains power supply that transforms the 230V AC mains supply to 12V DC. This will mean

that at no point in the project will I be handling dangerous Voltages.

• Using a mains power supply presents an additional problem. Although I have not researched methods of timekeeping yet, it is

fairly obvious that any method of timekeeping requires power to function. This would mean that when the alarm clock is discon-

nected from the utility power, the time as measured by the clock would cease to advance. Depending on what type of memory I

use (volatile or non-volatile) the user-configurable settings (alarm time, fade-in time etc.) could also be forgotten.

• To get around this problem I could have a backup battery that keeps the clock device and memory (if necessary) powered when

utility power fails.

• What materials are suitable for the construction of the case?

• With the aim being to make the alarm clock compact, I do not think wood would be a suitable material due to the additional thick-

ness of it. Visually wood is also inappropriate for an alarm clock.

• Both metals and plastics could be used for the case. However I do not know enough about the various types available to make a

decision at this stage and thus will research this.

• Does it need to be compact and/or portable?

• Ideally, yes, the alarm clock should be compact and portable. However, the requirement for the lamp and fan will make this a chal-

lenging task and already the portability is restricted by my decision to make it mains powered. It will not be possible to have the

lamp and fan integrated in the case maintaining compactness.

• One way to maintain compactness of the main unit would be to make the fan and/or lamp as separate units . However this would

be inconvenient for the user because it would require more space and it would add the complexity of connecting the units to-

gether and routing the wires between them.

• To avoid this added complexity for the user I will locate all components in a single unit and strive to make it as compact as possi-

ble, though I recognise that I will not be able to make it as compact as if I was to locate the fan and/or lamp in separate units.

Task Analysis

David Piggott - Heavy Sleeper’s Alarm Clock

10

Research - Existing Products

I started my existing products research with a search on www.google.co.uk for “alarm clocks for heavy sleepers”, and found the following

products to be most relevant:

Screamer Alarm
Found at:

http://www.asseenontv.com/prod-pages/Scremer_Alarm.html

Description:

“Can sleep through the dog barking, the baby screaming, fire

engines and trains going past your window, a bomb going off

in the other room? Do you feel there is no alarm with enough

muscle to wake you up? A trendy version of the original two

bell alarm clock it features adjustable alarm control that lets

you customize the alarm sound to your own personal needs.

The gentle bell for light sleepers, the relatively annoying bell

for medium sleepers and the hit the floor running, screaming

bell for heavy sleepers. Includes

luminous hour and minute hands,

pinpoint second hand and night

light. Uses 3 "AA" not included.

5"W x 5"H x 4"D.

• Adjustable Alarm Control

• Luminous Hour and Minute

Hand

• Pinpoint Second Hand

• Night Light”

Merits
• Adjustable volume.

• Aesthetically pleasing.

• Luminous parts for visibility in dark.

• Useful night light.

Weaknesses
• Only uses sound for wake-up call.

• Despite luminescent parts, it could still be

hard to read the time in the dark, espe-

cially when altering the alarm time.

• Controls are not easily visible in the dark.

David Piggott - Heavy Sleeper’s Alarm Clock

11

Research - Existing Products

Sonic Boom Clock and Bed Shaker
http://www.dynamic-living.com/sonic_boom_clock.htm

“Even the heaviest sleeper will wake up with this extra loud alarm

clock! Having trouble hearing the alarm? This loud

alarm clock won't let you down. The volume is

adjustable up to 110 dB (louder than an average

smoke detector!). You can also adjust the tone for

a high or low pitch alarm sound.

The Sonic Boom Alarm Clock has an adjustable

viewing angle display and 1 inch high bright green

LED numbers. It also has a battery back up for power outages (9V bat-

tery not included). One year warranty. This loud alarm clock can wake

you with the included bed shaker and/or flashing lights - just plug a

lamp into the back of the clock. It also has a snooze button.

This Super Shaker 12V Bed Vibrator has a 6 foot cord and is placed un-

der a pillow or between a mattress and box springs. The powerful vi-

brating bed shaker is guaranteed to wake up extremely heavy sleep-

ers. A built-in temperature sensor protects the unit against overheat-

ing.

The Sonic Boom Alarm Clock makes a great gift for school aged chil-

dren or recent high school graduates that are

leaving home to go off to college. For your con-

venience, the Super Shaker 12V Bed Vibrator is

bundled with the Sonic Boom Clock.”

Merits
• Multiple outputs used for wake-up call—

both sound and vibration.

• Very loud alarm cannot fail to wake the

sleeper.

• LED Display for easy reading of time in the

dark.

Weaknesses
• Not very aesthetically pleasing.

• Multiple units may inconvenience user

when setting it up and after setup due to

the space and wiring required.

• Despite LED Display, changing settings

(i.e. real time/alarm time) may be difficult

because the controls are not illuminated).

David Piggott - Heavy Sleeper’s Alarm Clock

12

Research - Existing Products

Soleil Sunrise Alarm Clock, Dawn Simulator
http://www.amazon.com/Soleil-Sunrise-Alarm-Clock-Simulator/dp/B0002TISOE

In nature, sunlight wakes you by triggering your body to produce serotonin, an energizing,

awakening type of hormone. Even with eyelids closed, your eyes sense light and signal the pro-

duction of serotonin. The Soleil Sun Alarm replicates nature - a better way to wake up. The

clock's small, sleek, compact design takes up very little space on your night stand. Plus, you

can easily pack it in your suitcase or shoulder bag when you travel, so you can enjoy the same

gentle, refreshing awakenings when you are away from home. Though it is a physically small

clock, it is a very unique, dynamic clock, loaded with many desirable features (see below) that

enable you to gently awaken in a relaxed, refreshed state. You will really LOVE this truly amaz-

ing, very affective clock. Battery Back-up AM/FM radio Alarm: Alarm feature for waking or tim-

ing. Snooze button: 10 minute snooze feature with a 1 minute sunrise, with optional flash and

beep at the end of the cycle. Flash & Beeper: Are you a heavy sleeper? These selectable fea-

tures assist with waking by flashing or beeping at the end of the alarm cycle. Sunrise: Wake

with the sun! This feature can be activated at intervals from 15 to 120 minutes, gradually in-

creasing brightness to simulate a sunrise. Sunset: Activate a "sunset" at intervals from 15 to

120 minutes, gradually decreasing brightness of light to simulate a

sunset. A great feature for the kids room. Nap Timer: When taking

a nap, there's no need to reset the alarm time. Nap timer can be

activated at intervals from 15 to 120 minutes. Custom Sunrise: The

sunrise feature activates the built-in light which fades in from zero

to full intensity over the selected time intervals of 0, 15, 30, 60, 90,

or 120 minutes. Security: Automatically turns the lamp on at ran-

dom intervals to give the impression that someone is at home. Very

Compact Size!-measures roughly 5" x 4.5" x 3" UL approved trans-

General Impression
One of many dawn simulating alarm

clocks I found, this is the sort of alterna-

tive approach that I have in mind for my

alarm clock; the gentle wake-up call.

Merits
• Multiple outputs used for wake-up

call—both sound and light.

• Innovative dawn simulation pro-

vides a gentle wake up, reducing

the probability that the sleeper sim-

ply closes their eyes and goes to

sleep again.

• LED Display for easy reading of time

in the dark.

Weaknesses
• Could be more aesthetically pleas-

ing.

• Requires external power supply

which inconveniences the user.

• Despite LED Display, changing set-

tings (i.e. real time/alarm time)

may be difficult because the con-

trols are not illuminated).

David Piggott - Heavy Sleeper’s Alarm Clock

13

Research - Electronics - Processing

PICAXE 18X

Price: £4.35.

Found at http://

www.rev-ed.co.uk/

picaxe/

PICAXE-18X microcon-

troller chip. Supports 5

inputs and 8 outputs.

Extended features in-

clude 8x memory and

i2c support.

Requirements
The alarm clock will require a microprocessor to co-ordinate between the control switches, LCD/7-Segs, clock mod-

ule, and wake-up call devices (fan, lamp, sound output).

The obvious choice for this is the PICAXE range because of the relative ease that programming them is when com-

pared to other PIC microcontrollers. The addition of many project expansion boards further strengthens the attrac-

tion of the PICAXE as the microcontroller to use.

The next question is of course which PICAXE is appropriate?

The first deciding factor is the IO (input/output) requirement. Unless I decide to use 7-Seg displays (in which case I

would need many output pins), the 18 pin range are ideal, supporting 5 inputs and 8 outputs.

The second deciding factor is memory. The program is likely to be large due to its complexity and therefore would

have problems if using a PICAXE with insufficient memory. The X versions have larger memory (eight times as

much—600 lines versus 80 according to the PIN Summary datasheet published by Revolution Education).

The third deciding factor is additional features. If I use the Revolution Education LCD module, to be able to read infor-

mation from the clock module (alarm time, real time), I will need to make the PICAXE interface with it in I2C mode.

Only the X versions support I2C. This is explained in greater detail in the development section.

The other requirement is support for the pwmout command (to vary the intensity of the fan and lamp). Again, this is

only supported in the X versions.

With all this in mind the logical conclusion is to use the PICAXE 18X.

David Piggott - Heavy Sleeper’s Alarm Clock

14

Research - Electronics - Processing

Fully autoprotected power MOSFETs

Price: Varies from £0.85 to £2.20 depending on version.

Found at Rapid Online > Electronic Components > Discrete Semi-

conductors > MOSFETs > Fully autoprotected power MOSFETs.

Fully autoprotected power MOSFETs,

intended as replacements for standard

power MOSFETs in DC to 50kHz appli-

cations. Built-in thermal shutdown,

linear current limitation and overvolt-

age clamp protect the device in harsh

environments. Housed in a standard

TO-220 package.

• Short circuit protection

• Logic level input threshold

• ESD protection

Requirements
Because two of the wake-up call methods of the alarm are the high power

devices (the breeze and dawn simulations), a high current capable switch-

ing device will be required for controlling them.

The first idea would of course be to use a relay. However there is one big

problem with this; both the fan and lamp are to have their intensity varied

which will require varying the voltage across them. The easiest and most

efficient way of doing this with a PICAXE is to use the built in pwmout

(Pulse Width Modulation) command (only supported in the X versions).

However due to the nature of PWM (rapidly switching the output on and

off, with intensity controlled by the duty cycle of the pulses), relays are

not suitable switching components for use in a PWM system. This is be-

cause they are mechanical components and have a high latency (relative

to the length of a PWM cycle).

Therefore I will need to use a solid state switching component. I had a

look on the Rapid Online website and found the Power MOSFET described

on the left. The specifications are more than suitable for the job, and the

low threshold drive means that I should be able to connect it directly to

the PICAXE without intermediary components.

I have chosen device VNP49N04 because it will afford me maximum

choice with regard to lamp power. The order code is 47-0400, price £2.20

• High noise immunity

• Schmitt trigger on input

• Low current drawn

from input pin

Device VCLAMP RDS(on) Ilim Ptot

VNP7N04 42V 0.14O 7A 31W

VNP10N06 60V 0.3O 10A 42W

VNP10N07 70V 0.1O 10A 50W

VNP20N07 70V 0.05O 20A 83W

VNP35N07 70V 0.028O 35A 125W

VNP49N04 42V 0.02O 49A 125W

David Piggott - Heavy Sleeper’s Alarm Clock

15

12V Tungsten halogen capsule lamps

Price: £0.60.

Found at Rapid Online > Electrical & Power > Elect Prod

& Lighting > Lighting > 12V Tungsten halogen capsule

lamps

M class 12V halogen capsule bulbs with bi-pin bases

often encountered in decorative and low voltage light-

ing as well as in specialist lighting applications.

• The 20W bulb (type M47) has a G4 base

• The 50W bulb (type M32) has a GY6.35 base

Research - Electronics - Output (Wake-up Call) Components

Requirements
I have decided that one of the wake-up methods of the alarm will be a dawn

simulation.

Again it is crucial to the quality of the clock that the lamp used is off appropriate

output power. Too low a brightness could mean the lamp simply doesn’t wake

the user.

It is hard to gauge how bright a lamp will be based on its power rating because

other things affect the brightness; mainly the way it is mounted and thus effi-

ciency (percentage of light that is actually focused where it should be).

Realistically the only limiting factor for how bright the bulb can be is the power

consumption and heat output but it is also important that the lamp is not so

bright that it dazzles the user! As I said above brightness is hard to gauge so the

most realistic approach I can take is to try the 20W bulb, order code 41-1150,

and see if it’s bright enough; if not I will need to replace it with a more powerful

one.

Unfortunately the power consumption of the bulb cannot be reduced by using

an energy saving bulb because energy saving bulbs do not function at low volt-

age and thus full range brightness control cannot be achieved with PWM (pulse

width modulation) or otherwise, and those that can function with PWM (LEDs)

are not bright enough unless used in an array and even then have the wrong

colour balance for a dawn simulation (even more so than tungsten, that is).

David Piggott - Heavy Sleeper’s Alarm Clock

16

Research - Electronics - Output (Wake-up Call) Components

Delta 80mm Fan

An ultra-high performance 80mm case fan pushing a staggering

68.51CFM. Not the quietest fan in the world but certainly one of

the best - 68.51CFM, 4900RPM, 48.5dBA. Please note - DO NOT

CONNECT THIS FAN DIRECTLY TO YOUR MOTHERBOARD. Its cur-

rent draw is high enough to damage the motherboard fan headers.

Only connect this fan to a compatible thermal control unit such as

the Digi-Doc 5 (available from the Overclocking Accessories Sec-

tion) or directly to your PSU via a 3-pin to 4-pin converter (not sup-

plied).

MODEL: FFB0812SHE

- Speed - 5700RPM

- Output - 80.1CFM

- Decibels - 52.5dBA

- Dimensions - 80x80x38

Price £11.69

Found at Overclockers UK Website: http://

www.overclockers.co.uk/showproduct.php?prodid=FG-004-DE

Requirements
I have decided that one of the wake-up methods

of the alarm will be a breeze simulation, in addi-

tion to the dawn simulation.

The two key factors in deciding which fan is ap-

propriate are size and power/noise (which are

closely linked).

This Delta 80mm Fan is, as described opposite, of

the powerful and noisy variety. It conforms to the

standard dimensions for computer chassis cool-

ing, and also available in the range are 40mm,

60mm, 80mm, 92mm an 120mm diameter ver-

sions, which will of course vary in airflow and

noise.

Delta specialise in high volume fans with the

drawback being the noise; I have chosen to use a

Delta fan because it is important that the output

is actually noticeable or it serves no purpose!

I think an 80mm fan is the ideal size because any

bigger would mean the case would have to be

very big, and any smaller would restrict how no-

ticeable the ‘breeze’ would be.

David Piggott - Heavy Sleeper’s Alarm Clock

17

Research - Electronics - Output (Control) Components

Serial LCD Module
A module that allows microcontrollers systems like the PICAXE or Stamp

to display messages on a LCD. Optional clock upgrade (AXE034) adds

real time clock and alarm features to the module.

Product number AXE033, found on the PICAXE website at http://

www.rev-ed.co.uk/picaxe/.

Price: £14.10

Requirements
As described in the task analysis there are two possi-

bilities for the display mechanism; either an LCD or

7-Seg LED displays (Starburst displays would require

very complex logic to control so are not realistic).

Having already decided that I will be using a PICAXE

microcontroller (due to their ease of use), I had a

look for other devices made by Revolution Education

because they are simpler to interface than other

components.

I found the LCD Module pictured on the left, and it

fits the requirements perfectly; not only is the dis-

play easily controlled but there is also an optional

clock upgrade, which I would otherwise have to re-

search and interface separately.

The information shown on the left is all that was

written in the product description, however there

was a lot more data in the product datasheet which I

have included in Appendix A.

David Piggott - Heavy Sleeper’s Alarm Clock

18

Research - Electronics - Output (Control) Components

16 x 2 LCD Screen
Found at Rapid Online > Electronic Components > Optoelectronics > LCDs And Accesso-

ries > Alphanumeric LCD display modules

Price: £10.68 (16 x 2 Backlit version), order code 57-0913

A range of intelligent alphanumeric dot matrix display modules employing Supertwist

Nematic (STN) technology which provides a superior viewing angle and higher contrast

over conventional designs.

Each module uses a 5 x 8 dot matrix format, has a cursor and is capable of displaying 224

different characters and symbols. An on-board RAM facility also enables the user to pro-

duce any character pattern required.

The 16 x 2, 16 x 4, 20 x 2 and 20 x 4 modules are available with low power LED backlight

to provide excellent contrast characteristics. Intensity of backlighting is also continuously

variable over a wide range.

• Very low power consumption (typically 1mA)

• Single power supply +5V

• TTL and CMOS compatible

• Easily interfaced to 4 or 8 bit microprocessors

• CMOS controller and drivers

• Powerful control commands: Display – clear, on/off,

shift set function; Cursor – home, address set

Requirements
The LCD Module I found on the previous page is

ideal in every way for the alarm clock except for

the fact it doesn’t have a backlight.

There are three possible ways around this:

1) To not use an LCD at all and instead use 7-

Seg LED displays which of course do not

need additional illumination (the disadvan-

tage of this is the requirement for driver ICs).

2) To use an LCD for some information and 7-

Seg LED displays for showing just the present

time.

3) To use a backlit LCD display.

The problem with using a backlit LCD display is

that I can’t just use any that I find—it must be 16 x

2 characters and have the same interfacing specifi-

cation for it to work with the driver board of the

Revolution Education module on the previous

page.

If I do decide to replace the standard screen with

this backlit replacement I will need to do further

checking to ensure it is compatible.

David Piggott - Heavy Sleeper’s Alarm Clock

19

Research - Electronics - Output (Control) Components

4.2mm (0.56) Quad LED Display

Price: Varies from £0.93 to £1.50 depending on version.

Found at Rapid Online > Electronic Components > Optoelectronics > LED

Displays > 14.2mm (0.56in) Quad LED display

A range of high quality quad digit LED

displays that are available in a variety

of colours and with either a floating

decimal point or a fixed decimal

point/colon. These devices are ideally

suited to applications that require

readouts of time or varying integers.

• 7 Segment 14.2mm (0.56in) high characters

• Floating point gives readout from 0000 and 0.001 to 9999

• Common anode or common cathode configuration

• White segments with grey display surface maximises on/off con-

trast

• Connections run along top and bottom of display

• Kingbright 56 series

Requirements
As described on the previous page, the lack of

backlight on the standard display included with the

Revolution Education LCD module is a problem

and one of the solutions would be to use 7-Seg dis-

plays for showing some or all of the information

that must be communicated to the user.

If I were to use 7-Seg displays, these quad module

displays would be ideal. The fixed colon version

would be used of course, for displaying the time.

I would choose the green version for better visibil-

ity (the eyes are most sensitive to green), as well

as the fact it is a nicer colour for LEDs in my opin-

ion (too many devices with red LEDS mean that

some change is always nice).

For the reasons I already gave in my task analysis, I

do not intend to use 7-seg displays.

David Piggott - Heavy Sleeper’s Alarm Clock

20

I have grouped the specification points based on the aspects of the design that they determine, and ranked them by number based on how

important I think they are to the design.

Wake-Up Call
1. A high power 12V lamp will gradually increase in intensity during the wake-up call over an adjustable period of 0 to 60 minutes that I re-

fer to as the fade-in time. Setting the time period to 0 minutes will cause the lamp to go straight to full intensity.

2. An 80mm diameter 12V DC fan will gradually increase in intensity during the wake-up call over the same adjustable period as the lamp.

3. Once at full intensity, the alarm clock will begin the failsafe wake-up call; a loud piezo sounder. This will continue for a user configured

time period that I refer to as the dismiss time.

4. Only one alarm time will be supported to simplify use and development.

Technical
1. The alarm clock will have an LCD display to show the current time and for feedback during alarm and time setting.

2. It will use the Serial LCD Module AXE033 to provide the display functionality.

3. It will use the AXE034 clock upgrade to provide the clock functionality.

4. A PICAXE will be used as the core of the system (setting time and alarm time, running the wake up call etc.).

5. An X version of the appropriate size PICAXE will be used because I2C support will be needed to communicate with the clock chip and I

anticipate that my program will be quite long (the X parts have more program memory and the necessary I2C command support).

6. The alarm clock will be powered by a 12V DC external power supply (batteries aren’t sufficient because of the lamp).

7. The correct time will be maintained when external power is disconnected by the backup battery in the AXE034 clock module.

Control
1. The alarm clock will have no more than five control inputs, to ensure ease of use.

2. All input and output devices will be located on the front face of the case, so that the outputs are effectively directed at the user, and

they can easily reach the control panel.

3. To ensure usability in the dark, the control inputs will be illuminated.

4. Rather than having a snooze or dismiss button, the clock should automatically dismiss itself after both gentle and fail-safe wake-up calls

have completed. This is to prevent determined users from going back to sleep by dismissing it (unless of course they unplug the power sup-

Specification

David Piggott - Heavy Sleeper’s Alarm Clock

21

ply).

5. There will be no on/off switch because the functionality of an on/off switch is simply not necessary with clocks - they are always on.

Case
1. The case should be as small as is reasonably possible given the output components I will be using, so that it isn’t imposing on the room.

2. All components will be contained within one case—that is, the dawn simulation lamp and breeze fan will be housed within the main

case, to ensure convenience when setting up and positioning the alarm clock.

3. Connection to the power supply will be by a DC power jack located at the rear of the case.

4. The circuit board will be firmly attached inside the case using stand-offs.

5. The alarm clock will also double up as a nightlight, so will require a lamp override control on the panel.

General
1. The project should be completed in less than 40 hours.

Specification

David Piggott - Heavy Sleeper’s Alarm Clock

22

Initial Circuit Ideas - System Diagrams

Circuit Idea 1
In circuit idea one, the control mechanism

is provided by four buttons, as described

below.

Pressing the hour or minute buttons while

holding down the real time button will in-

crement the real time hour and minutes

respectively.

Likewise, pressing them while holding the

alarm time button will increment the hours

and minutes that the alarm time is set for.

By default the real time is displayed on the

quad unit 7-Seg display but while the alarm

time button is depressed, the time that the

alarm is set for is shown on the display.

This is the only control the user has over

the functioning of the alarm clock and as

such this idea fails to meet many items on

the specification.

The fade-in time is built into the program

as is the dismiss-time (see specification).

David Piggott - Heavy Sleeper’s Alarm Clock

23

Initial Circuit Ideas - System Diagrams

Circuit Idea 2
In circuit idea two, the control mechanism

is the same as that in idea one. The differ-

ence is that idea two uses a two line LCD

screen to display information.

The upper line states what information is

being shown, and the lower line actually

shows the information.

By default the screen would show ‘Time:’

on the top line and ‘19:57’ (for example) on

the bottom line.

If the alarm time button is pressed then

the LCD would read ‘Alarm time:’ on the

top line and ‘6:00’ (for example) on the

bottom line.

The only real advantage of this idea over

idea 1 is that using an LCD should simplify

programming, make the control mecha-

nism ever so slightly easier to use (due to

the screen stating what the current view

is).

David Piggott - Heavy Sleeper’s Alarm Clock

24

Initial Circuit Ideas - System Diagrams

PICAXE 18X

Power MOSFET

Clock Module

Lamp

Fan

LCD Screen

Set Button

Up Button

Down Button

Inputs

System Idea 3

Processes Outputs

Beeper

Power MOSFET

Lamp Override

David Piggott - Heavy Sleeper’s Alarm Clock

25

Initial Circuit Ideas - Idea Three Program Description

Circuit Idea 3 (Chosen idea for development)
In circuit idea three, the changes are:

a) The control methods

b) The control provided

The change to the control methods is that the alarm time, real time, hour and minute buttons are replaced with a set, up and down button,

and a variable resistor labelled lamp override. By default, ‘Time:’ is shown on the upper line of the LCD and ‘19:57’ on the lower time (if the

time was 19:57). If the set button is pressed, the menu system is initiated and the first menu page—the time setup– is displayed.

Once in a setup screen, pressing the up button will increase the selected value and pressing the down button will decrease it. Pressing the set

button will move the cursor to the next value on the setup screen, and when the last value is reached on that screen, the next screen is

shown. When all the parameters and screens have been cycled through the menu closes and the alarm shows the real time. This will also hap-

pen if there is no user input for 15 seconds (to prevent accidental changes if the alarm clock is left and buttons pressed unintentionally).

There is an additional control, labelled ‘Lamp Override’. This is a rotary potentiometer, as found on domestic lamp dimmers. When in the off

position, the alarm functions as normal. When rotated however, the alarm clock doubles up as a dimmable bedside lamp. This is the reason

for having two power MOSFETs in the circuit; to allow individual control over the lamp and fan. However one disadvantage of this is that sup-

port for the pwmout command on at least two pins will be required from the PICAXE. An alternative approach to this would be to have only

one pwm output and then switch the fan on/off by means of an additional MOSFET (normally on but off when the alarm clock is used as a

lamp).

The user configurable parameters are: the real time, the alarm time, the fade-in time, and the auto dismiss time. The alarm clock will not have

a dismiss or snooze button for reasons described in the project outline and task analysis (to remove the option for the user to just go back to

sleep—it is for heavy sleepers!). There will be a separate menu screen for each user configurable parameter, and they will cycle in the order I

have listed them above.

David Piggott - Heavy Sleeper’s Alarm Clock

26

Case Idea One

Initial Casing Ideas

David Piggott - Heavy Sleeper’s Alarm Clock

27

Case Idea Two

Initial Casing Ideas

David Piggott - Heavy Sleeper’s Alarm Clock

28

Case Idea Three

Initial Casing Ideas

David Piggott - Heavy Sleeper’s Alarm Clock

29

AXE033 LCD and AXE034 Clock Upgrade
The AXE033 is a 16 x 2 LCD with a serial driver board attached on the rear, with support on the driver board for a Dallas DS1307 clock IC and

backup battery for when power is removed. This is an optional upgrade. It is supplied in a partly assembled kit; the two boards were popu-

lated but I had to solder and attach them together, and install the clock upgrade kit.

When the AXE034 clock upgrade is installed the unit also has support for alarms at set times. The driver board supports two communication

systems; I2C and serout (which is used is controlled by a jumper switch on the driver board).

Serout advantages & disadvantages
The key benefit of connecting the driver board to the PICAXE in the serial mode is the simplicity; only one data wire is needed and the serout

command is supported across the whole PICAXE range. Serout is the generally recommended setup in the datasheet (see appendix A).

In this mode, all control of the DS1307 clock IC is by proxy of the serial driver IC (that is, the entire kit can be treated as a single unit when it

comes to programming). The advantage of this is that it simplifies the displaying of the time on the LCD which can be achieved with the com-

mand:

where 0 is the number of the PICAXE pin that the serial wire is connected to and the N2400 specifies the baud rate of the connection.

However, serial communication in this system is monodirectional; that is, the PICAXE is able to send data to the LCD driver board but not the

other way round. Bidirectional communication is required so that the real time and alarm time can be read from the clock module. This is so

that when the user enters the real time or alarm time setting screens, the string that they edit initialises with the values of the current setting.

Perhaps this is better described by saying that without this functionality, a user could set the alarm time for 6am, leave the setup menus, re-

turn to the setup menus and find that the alarm clock reports the alarm is set for 00:00:00 (because the PICAXE doesn’t know otherwise),

Development - Breadboarding & Programming

serout 0,N2400,(0)

David Piggott - Heavy Sleeper’s Alarm Clock

30

when in fact it is still set for 6am. This is far from user-friendly!

I2C advantages & disadvantages
The major disadvantage of using I2C is that I2C is only supported on the PICAXE X parts which are more expensive. An additional disadvantage

of using I2C is that two data wires are required (clock and data), though I do not consider this to be significant.

The final point is one that can be seen as a good and bad thing; the kit can no longer be treated as a single unit. When using I2C (see appendix

A for datasheet with information on the I2C protocol), the LCD driver IC and DS1307 are two separate I2C slave devices. Communication with

the DS1307 is no longer by proxy of the LCD driver IC. This means that:

1. Communication is now bidirectional meaning that data can be read from the DS1307. This is very important as it will enable me to write

the program such that the values of settings are printed back to the screen as they are edited. This feedback is crucial to the usability of

the product and so for this reason, communicating with the DS1307 (and thus using I2C) is a must.

A further example to clarifiy this, would be if the user is changing the value of the fade-in time. In order to change this setting to 15 min-

utes, for example, they must be able to see what value it was at previously so that they know how many times to press the up/down

button.

2. The disadvantage of using I2c to communicate with the LCD driver IC and DS1307 is that because the DS1307 is now accessed directly,

the ability to print the time with the simple command:

3. is no longer available.

Conclusion
In conclusion it is crucial to the usability of the alarm clock that I am able to communicate directly with the DS1307 and therefore that I use

the I2C protocol for communicating with the LCD driver IC and DS1307. Since the PICAXE X parts are the only ones to support I2C, it is neces-

sary that I use a PICAXE 18X (the smallest version with sufficient IO, features and memory).

Development - Breadboarding & Programming

serout 0,N2400,(0)

David Piggott - Heavy Sleeper’s Alarm Clock

31

Programming
I have decided to use BASIC and the free Programming Editor software

provided by Revolution Education. This is for three reasons:

1. Text based programming is my personal preference - I do not believe

graphical methods are flexible enough;

2. I anticipate that my program will be very long and complex com-

pared to the sort of thing Logicator 2005 was designed for, and thus

would be more complicated on Logicator 2005 than in BASIC.

3. Because I will use the I2C protocol for communication between the

PICAXE, LCD driver and DS1307, the development system I use will of

course need to support the I2C command set; I attempted to use this

in PIC Logicator 2005 but it doesn’t support it. So instead, I used the

facility it has that allows the insertion of BASIC code, inserting all the

lines that would need the I2C commands in this way. However, on

clicking the button to program the PICAXE, I received an error telling

me it didn’t recognise the I2C commands. Thus, even if I had wanted

to use PIC Logicator 2005, I wouldn’t have been able to.

Familiarisation
Prior to having completed a lot of the research, analysis and development that precedes this section I was given a PICAXE 28A, AXE033 and

AXE034 upgrade kit to try out. Although for reasons explained on the previous page the 28A is not suitable (no I2C support as it is an A, not X

version), I took the opportunity to familiarise myself with the AXE033 and 034 kits using the serial protocol.

After having assembled the kit I constructed a basic circuit on breadboard that would enable me to control the LCD via the PICAXE 28A. This

can be seen top right. I have not included a schematic because the circuit is pretty much identical to the example circuits in the datasheets.

Development - Breadboarding & Programming

Picture of the PICAXE 28A, AXE033 (LCD) and AXE034 (clock up-

grade) connected serially.

David Piggott - Heavy Sleeper’s Alarm Clock

32

The first program I wrote was one to set the correct time and date (shown on screen in the picture on the previous page). This was fairly

straightforward:

Line 1 is what is called a label; it defines the start of a point in the program that can then be referenced in control structures (if statements,

goto commands etc.). When not used for this they can be useful simply for the purpose of readability.

Line 2 makes the program pause for 500ms. This is recommended in the AXE033 datasheet to allow the LCD driver IC to initialise (hence that

section is labelled init).

Line 3, another label, defines another section of code - the ‘main’ part of the program. Line 4 is the actual serout command that sends on pin

0 the number 253, followed by the number 0, followed by the ASCII code for each individual character in the double quotes (see appendix A

for ASCII conversion table). Line 5 instructs the PICAXE to stop program execution.

To check that this was successful I closed the CLK jumper on the LCD driver board, which as stated in the datasheet causes the LCD to run in a

sort of standalone mode, independent of (and not requiring) that the PICAXE is connected to it. This is a useful mode for testing the LCD and

DS1307. This was successful and the screen output was that shown in the picture on the previous page.

Happy that the serial communication was working correctly, I set about writing another test program to further help familiarise myself with

controlling the LCD module.

Development - Breadboarding & Programming

1 init:

2 pause 500

3 main:

4 serout 0,N2400, (253,0,”20/12/06 13:34 ”)

5 end

David Piggott - Heavy Sleeper’s Alarm Clock

33

Development - Breadboarding & Programming

I wrote this program solely to gain some experience with BASIC. I have used labels excessively (most are not strictly necessary as they aren’t

used in program flow control structures) because they make the different stages of the cycle clearer. I have also been generous with my com-

menting of the program (comments are as the name suggests, comments left in the source code of a program to help in understanding/

remembering how it works). In BASIC the start of a comment is signified by a single apostrophe and continues until the end of the line. Com-

ments are ignored by the compiler which means they have no effect on the functioning of the program, and do not alter the amount of mem-

ory needed in the PICAXE. The program is non-interactive and the sequence is as follows:

1. It initialises with a 500ms pause, allowing the LCD to initialise.

2. After this, the classic “Hello world!” programming smoke test is printed to the LCD.

3. One second later the program prints on the top line “The time is:” and shows the time on the bottom line (because serout is being used

this is as simple as sending the number 0 to the driver IC which instructs it to print the time).

4. Two seconds after this, the program fakes a “crash” by outputting seemingly random characters to the screen. This is achieved with a

loop that sends each number between 150 and 240 in sequence to the screen. The key to how and why this works is in the fact that I

have not placed the variable reference b0 in quote marks - if I had, the text b0 in the source code would be interpreted as a constant

and thus ‘b0’ would be printed to screen. The second important thing to realise is that because I have not specified otherwise in the

program, the value of b0 is not interpreted by the PICAXE but instead sent directly to the LCD driver IC. Because I selected an appropri-

ate range for the loop (150 to 240), the driver IC interprets the numbers it receives as ASCII characters and thus prints what are seem-

ingly random characters. As stated in the LCD datasheet, the driver automatically wraps onto the next line after 20 characters which is

why I have not included a command to move the cursor to the second line.

5. After some time the program comes out of its pretend crash and simulates a reset, by announcing “FATAL ERROR” on the top line and

that it is “RESETTING” on the bottom line. This is followed by ellipsis that are printed one by one to the screen, with half a second be-

tween each one. As with the earlier crash simulation, this is done with a “for… next” loop. This time the variable b0 is used in a control

command that changes the location of the cursor on screen (with an appropriately selected range of numbers - 192 is the start of line 2

and so 201 is 9 characters from the left. Once the ellipsis reach the end of the screen, the program loops to “hello” and runs again.

At the end of the program there is a subroutine, “clear”, called to clear the display. This saves program memory as the code is only included

once, and any changes only have to made once (not really that useful for such a small routine but it will be later) in the real program.

David Piggott - Heavy Sleeper’s Alarm Clock

34

Development - Breadboarding & Programming

1 init:

2 pause 500

3

4 hello:

5 ' Clear display

6 gosub clear

7

8 ' Be polite!

9 serout 0,N2400,("Hello

world!")

10

11 ' Give them time to read it

12 pause 1000

13

14 thetime:

15 ' Clear display

16 gosub clear

17

18 ' Be patronising

19 serout 0,N2400,("The time

is:")

20

21 ' Print the time

22 serout 0,N2400,(0)

23

24 ' Give them time to read it

25 pause 2000

26

27 crash:

28 ' Output random ASCII char-

acters

29

30 for b0 = 150 to 240 ’ de-

fine loop for ASCII Set

31 serout 0,N2400,(b0)

32 pause 100

33 next b0 ' end of loop

34

35

36 reset:

37 ' Blink - clear display

38 gosub clear

39

40 ' A bit of time for effect

41 pause 1000

42

43 ' And the show goes on...

or not

44 serout 0,N2400,(254,128) '

Move to top left

45 serout 0,N2400,("FATAL ER-

ROR.")

46 pause 500 ' That crucial

"effect time" again

47 serout 0,N2400,(254,192) '

Move to top right

48 serout 0,N2400,

("RESETTING")

49 pause 1000 ' More effect time

50

51 blink:

52 ' Print a series of dots

53

54 for b0 = 201 to 207 ’ define

loop for 6 times

55 serout 0,N2400,(254,b0)

56 serout 0,N2400,(".")

57 pause 500

58 next b0 ' end of loop

59

60 ' Done!

61 goto hello

62

63 clear:

64 ' Clear display

65 serout 0,N2400,(254,1)

66

67 ' Give it some time...

(required)

68 pause 30

69

70 ' Move cursor to top left

71 serout 0,N2400,(254,128)

72

73 ' Done!

74 return

David Piggott - Heavy Sleeper’s Alarm Clock

35

Development - Breadboarding & Programming

Breadboard Changes
The test program just described was successful and worked as intended. I

now had available to me a PICAXE 18X meaning that I could change the

breadboard and have the PICAXE connect to the LCD unit by I2C instead of

serout. Connection was relatively simple and just required soldering the

clock and data wires to the LCD unit and connecting them to the clock and

data pins of the 18X on the breadboard (pins 10 and 7 respectively). The

updated breadboard is pictured top left.

I also decided to add three inputs, ready for when I start programming the

setup menu system. I used 10K pull up resistors to create a potential di-

vider for each. The switches are normally closed and so I connected them

such that they would normally be holding the PICAXE inputs low.

I now felt ready to start working towards the real program. Rather than

trying to write the whole thing in one go I decided to add small parts at a

time. The reason for doing this is because it is easier to debug program

elements on their own as opposed to when they are part of the whole pro-

gram.

The first part I wrote is the part that writes the time to the LCD and continually updates it. By having done this I am now aware of a major

problem I would otherwise have encountered later on in development. The program is included overleaf.

Picture of the PICAXE 18X, AXE033 (LCD) and AXE034 (clock up-

grade), connected by I2C.

David Piggott - Heavy Sleeper’s Alarm Clock

36

Development - Breadboarding & Programming

1 init:

2 ' Let the LCD init

3 pause 500

4

5 ' Set up the i2c bus

6 i2cslave

$C6,i2cslow,i2cbyte

7

8 ' Set up the input symbols

9 symbol UP = pin0

10 symbol DOWN = pin1

11 symbol SET = pin2

12

13 ' Set up time variables

14 symbol seconds = b3

'seconds

15 symbol minutes = b4

'minutes

16 symbol hours = b5 'hours

17

18 main:

19 ' Clear display

20 gosub clear

21

22 ' Read the current time

from the clock chip

23 i2cslave %11010000, i2c-

slow, i2cbyte ' set slave details

24 readi2c 0, (seconds, min-

utes, hours) ? read sec, min, hour

25 i2cslave

$C6,i2cslow,i2cbyte ' reenable LCD

control

26

27 ' Print the current time

28 writei2c 0,("The time

is:",254,192,hours,":",minutes,":",s

econds,255)

29 pause 1000

30

31 ' Loop

32 goto main

33

34 golower:

35 ' Moves cursor to lower

left

36 writei2c 0,(254,192,255)

37

38 ' Done!

39 return

40

41 goupper:

42 ' Moves cursor to upper

left

43 writei2c 0,(254,128,255)

44

45 ' Done!

46 return

47

48 clear:

49 ' Clear display

50 writei2c 0,(254,1,255)

51

52 ' Give it some time...

(required)

53 pause 30

54

55 ' Move cursor to top left

56 writei2c 0,(254,128,255)

57

58 ' Done!

59 return

David Piggott - Heavy Sleeper’s Alarm Clock

37

Development - Breadboarding & Programming

The schematic of this new circuit is shown top right.

I2C Control Differences
As with the other programs this one features the 500ms init time. However the next line

is new; when using I2C, you must specify the address of the slave device that you wish to

communicate with prior to any readi2c/writei2c commands. This is explained in greater

detail in the datasheet about I2C published by Revolution Education, which I have in-

cluded in appendix A. I do this on line 6 with this command:

The ‘$C6’ parameter is the actual address (in this case the LCD driver ICs), while i2cslow

and i2cbyte specify the speed of communication and register address size. Read/write

commands take identical parameters except for the name of the command itself. Exam-

ple read command:

The first parameter, the 0, specifies the starting address to read/write from (and should

normally be written as a BCD - binary coded decimal - it is because I am specifying ad-

dress 0 that the notation makes no difference). The PICAXE will then continue reading/

writing, advancing one data unit (byte or word depending on the register address size)

each time until it reaches the end of the comma separated values contained/referenced

within the brackets.

In the case of controlling the LCD, each value is interpreted as a command and together they form a command sequence. The actual control

numbers for the LCD are the same as those when using serout, except that the command sequence must be terminated with the number 255

which tells the LCD driver IC that the command sequence is complete. It should be obvious therefore, that the above command will clear the

screen (as 254 sets the driver to control mode, 1 tells it to clear the display, and 255 tells it the command sequence is complete).

Schematic of the new circuit (LCD and DS1307 not

shown - they were connected at CN1).

i2cslave $C6,i2cslow,i2cbyte

writei2c 0,(254,1,255)

David Piggott - Heavy Sleeper’s Alarm Clock

38

Development - Breadboarding & Programming

Program Explanation
Also new in this program is my use of symbols which are simply a means of improving the readability of the program. Although I didn’t actu-

ally use the newly added push to break switches in this program, I defined symbols for them so that if I did, rather than having to look which

pin each was connected to every time I wanted to use it in the program, I could have just referred to it by its symbol. I also defined symbols

for some of the byte variables. Again this improves readability and makes modifying the program easier, because rather than having to re-

member what data I had loaded into a variable, I know what data is loaded into it by its name. This of course only works provided that I do not

load data that doesn’t match the descriptive name into the variable.

The last addition unaccounted for is the goupper and golower subroutines. I wrote these ready for use later in programming, and as with the

push to break switches didn’t actually use them in this program.

The general flow of the program can be described as follows:

1. Init; I2C setup (for LCD communication) and symbol definitions.

2. Clear display.

3. Setup I2C for communication with DS1307 and read the seconds, minutes and hours from it into the appropriate variables.

4. Setup I2C for LCD communication. Write out the time to the LCD.

5. Pause for one second.

6. Loop back to start (number 2 above - it is not necessary to run the init block each time).

Numbers 1 and 2 have already been covered. It should be reasonably obvious to recognise the section which achieves number 3 in the pro-

gram. Prior to reading from the DS1307 however, I had to first of all include another i2cslave command to setup the PICAXE for communica-

tion with the DS1307. The hours, minutes and seconds are then read from the DS1307 into the hours, minutes and seconds variables (as de-

fined by the labels I created in the init block).

Numbers 5 and 6 are so simple they need no explanation. Number 4 however is yet more complex than it appears in the program and lead to

a lot of difficulty. See overleaf for explanation.

David Piggott - Heavy Sleeper’s Alarm Clock

39

Development - Breadboarding & Programming

Writing the time to the LCD
As can be seen in the picture on page 34, the program did not function as desired - it reads “ : :F”. I quickly realised that what was happening

was that the values read from the clock chip into the byte variables of the PICAXE were being sent unprocessed to the LCD. The command

used to print the time to the LCD is as follows:

When sending data to the LCD driver IC, it assumes that all data sent is to be printed to the LCD from the current cursor location unless other-

wise specified (by preceding the control command with the number 254 as already explained). Additionally, when sending literal text to be

printed it is necessary to enclose it in quotation marks. The reason for this is that the PICAXE must be told to convert the characters to their

ASCII numbers and this achieved with the quote marks. It should also be obvious that referencing the variables within the quote marks would

not work, as this would just result in the following being literally printed:

Therefore it is necessary to reference all variables outside of quote marks. However there is one slight problem with this; as I already said, in-

formation not enclosed in quote marks is sent directly without the PICAXE performing any conversion to ASCII. I exploited this in the earlier

test program I wrote that included a fake “crash” as part of its operation as it allowed me to loop through a range of numbers and send them

to the LCD; the end result being that not the numbers, but their corresponding ASCII characters were printed.

Since I had already exploited this in creating the fake “crash”, I should perhaps have realised before writing this program what the output

would be. The resulting screen output when the program was run can be seen in the picture on page 34 - it reads “ : :F”. To clarify, this oc-

curred because the values in the hours, minutes and seconds variables are sent directly to the LCD; no ASCII conversion is performed on them.

The reason that the hours and minutes appear blank is because their values correspond to non-printable characters (most characters up to

character 32 are non-printable, and since the hour will never be greater than 24 and it was during the first half of the hour that I tested it, the

hours and minutes appeared blank.

writei2c 0,("The time is:",254,192,hours,":",minutes,":",seconds,255)

The time is:

hours:minutes:seconds

David Piggott - Heavy Sleeper’s Alarm Clock

40

Development - Breadboarding & Programming

Converting strings to ASCII character numbers
The following is an extract from the AXE033 and AXE034 datasheet published by Revolution Education and included in appendix A:

in relation to a line in a sample program also in the datasheet:

What this means is that it should be possible to make the PICAXE look up the corresponding ASCII number for the values contained within the

hours, minutes and seconds variables of my program and hence the program should work. This would be as simple as changing line 28, from

to

However things were not to be and this was just the beginning of the problem.

Note that the # symbol tells the microcontroller to output the ASCII equivalent of the variable value, not the direct value (e.g. “6” “5” not the

value 65, which would actually appear as the character “A”!)

serout 7,N2400,(254,137,#b1," ")

writei2c 0,("The time is:",254,192,hours,":",minutes,":",seconds,255)

writei2c 0,("The time is:",254,192,#hours,":",#minutes,":",#seconds,255)

David Piggott - Heavy Sleeper’s Alarm Clock

41

Development - Breadboarding & Programming

Compilation Error
When attempting to program the PICAXE with the

amended program, I received a compilation error like the

one shown in the screenshot, top right.

I checked every datasheet published by Revolution Educa-

tion, and the user forum at http://www.rev-ed.co.uk/

picaxe/forum/ but did not find anything regarding the

printing of variables with I2C and so concluded ASCII con-

version is only possible when using serout, not I2C.

Paradox: I2C required, Serout required
For reasons already described, I have to use I2C in order to

communicate with the DS1307. Yet for the reason de-

scribed above, it seems I am going to have to interface the

PICAXE with the LCD driver IC by serout.

The problem with this is that the AXE033 and AXE034 kits

simply do not support this; you can either use serout or

I2C but not both.

Compile error!

David Piggott - Heavy Sleeper’s Alarm Clock

42

Development - Breadboarding & Programming

It is essential to the project that the DS1307 is interfaced directly, and essential that the LCD driver IC is commanded by serial out. The only

solution I could come up with to this was to separate the LCD driver IC and DS1307, by connecting up the DS1307 on breadboard with the PI-

CAXE, and connecting the PICAXE to

the LCD driver IC by serial out.

Doing so required that I knew the

pin layout of the DS1307. I found

that all the information I needed was

in the I2C guide published by Revolu-

tion Education.

Connecting it all up on breadboard

was relatively simple, though I

needed a 32.768 kHz oscillator for it.

Rather than trying to source a new

one it was quicker to desolder the

one on the LCD module, so that is

what I did.

The breadboard that I setup to test

all this is shown bottom right. The

fan, lamp and a power MOSFET

(controlling both) are also connected

because I had started work on the

wake-up functionality of the system,

though this will be documented later

on.
Separated LCD driver IC and DS1307 on breadboard (lamp is the 20w tungsten halogen one I found by

research).

David Piggott - Heavy Sleeper’s Alarm Clock

43

Development - Breadboarding & Programming

The schematic of this new setup is shown on the right -

I created this using a circuit simulation package called

Livewire.

Not shown on the schematic is the LCD and its connec-

tion to the PICAXE (the serial in wire from the LCD was

connected to pin 6 of the PICAXE).

The gate of Power MOSFET, Q1 (order code 47-0400

from Rapid Electronics) is connected to pin 9 of the PI-

CAXE because the 18X components only support

pwmout on this pin.

Pins 1 and 2 of the DS1307 do not appear connected to

anything in the schematic; they are actually connected

to the 32.768kHz oscillator, it’s just that Livewire does

not have one available.

Also note that the picture of the breadboard setup and

this schematic show a 4k7 pull up resistor both the I2C

clock and data lines; I forgot to include these initially

which led to a minor problem.

Schematic created with Livewire of PICAXE 18X and DS1307 (LCD not shown - it was

connected on pin 6 for serial communication

David Piggott - Heavy Sleeper’s Alarm Clock

44

Development - Breadboarding & Programming

Shown on the left is the program I wrote to test this new setup, so I could be sure it

worked before proceeding with the development of the rest of the program.

Unlike the previous program this one is considerably shorter because I haven’t in-

cluded the as yet unused symbol definitions for the push to break switches. I also

did not bother with symbol definitions for the byte variables - because the program

is so short they are not really necessary.

There is also no longer a “clear” subroutine because I realised that the LCD can be

cleared in the same command as writing to it, simply by adding the ‘254,1’ com-

mand sequence to the start of the write command sequence. This helps signifi-

cantly with reducing the size of both the source and compiled program.

The final thing that allows this program to be much shorter is that because only

one I2C device is used (the DS1307), I now only need one i2c slave command which

is executed in the initialisation block.

Note

The fourth byte register of the DS1307 is the day value and is taken with Sunday

being the first day of the week - so a value of $02 (the $ means it is a binary coded

decimal) means the day is Monday.

I may use this value later when I write the rest of the program, so that the program

knows whether it the weekend or not (if it is equal to 1 or 7).

This will enable to me to add an additional feature to the alarm clock; the option of

whether or not to run the wake-up call at weekends.

1 init:

2 ' Let the LCD firmware initialise

3 pause 500

4

5 ' Set up the i2c bus

6 i2cslave %11010000, i2cslow, i2cbyte

7

8 main:

9 ' Reads data from clock chip

10 readi2c 0, (b0,b1,b2,b3,b4,b5,b6)

11

12 ' Write time and date to screen

13 serout 0,N2400,(254,1,"The time

is:",254,192,#b4,"/",#b5,"/",#b6,"

",#b2,":",#b1,":",#b0)

14

15 ' Pause

16 pause 1000

17

18 ' Loop back to start

19 goto main

David Piggott - Heavy Sleeper’s Alarm Clock

45

Development - Breadboarding & Programming

Before my test program was of any use I had to actually program a time into the DS1307 and so modified the original program I wrote which

used serial out. The amended program is shown below:

The numbers in the writei2c command represent the following:

seconds, minutes, hours, day, date, month, year, control

This is necessary because I had omitted connecting the 3v backup cell to the DS1307 when moving it to breadboard, so every time power is

removed it resets. Having run this program to set the time, I then downloaded my simplified test program to the PICAXE and let it run. Surpris-

ingly enough, it didn’t work. Bit of a trend developing here… Everything was being output as 255 on the LCD:

This was not the only visible problem. Watching the screen, every second (every update), the characters would noticeably blink in sequence

scrolling from left to right, starting on the top row then moving across the bottom row. I immediately realised this was due to a latency issue

somewhere; either the command to clear the screen, or command sequence to write the new data to it was taking so long that the update

was noticeable. I remembered reading in the AXE033 and 034 datasheet that time must be allowed for the clear command to process - spe-

cifically 30ms - therefore this “blinking” problem can be attributed to the clear command (including the 30ms wait is not an option because

this would mean the screen would be blank for a period of time).

After having thoroughly checked everything I realised that in moving the DS1307 from being on the LCD module to being separate on the

breadboard, I had forgotten to connect a 4k7 pull-up resistor on each of the I2C clock and data lines. Connecting these fixed the problem and

gave the output shown top right (which is meant to be in the format date/month/year hours:minutes:seconds). The PICAXE hadn’t been com-

municating with DS1307 at all until I had added the pull-up resistors, so I ran the time setting program again and then ran the test program.

1 main:

2 i2cslave %11010000, i2cslow, i2cbyte

3 writei2c 0, ($00, $01, $21, $02, $05, $02, $07, $10)

4 end

The time is:

255/255/255 255:255:255

David Piggott - Heavy Sleeper’s Alarm Clock

46

Development - Breadboarding & Programming

Result!
The picture, top right, shows the output of this new circuit and program.

I managed to solve the scrolling effect problem by removing the clear com-

mand entirely - it was actually unnecessary (provided that the next string

written is long enough to overwrite any values remaining on screen from

the last).

Admittedly it may be wrong in thinking it’s the 37th day of the 18th month

of the 3rd year, and the minutes ought to really read ’00’ not ’0’ but this is

definitely progress!

However, the problem is deeper than this; I didn’t set the time to 18:00 as it

reports - it was more like 12:30 midday, during a lesson. The second is per-

haps the only value that appear correct. Yet, when watching the values

change it is the seconds that are most strikingly wrong.

The reason for this is that the seconds, naturally, update most frequently. This makes the depth of the problem more obvious because the

pattern (or more specifically lack of) that the value of the second field follows can be watched without having to wait minutes/hours/days/

months/years each time.

It took me several attempts to spot any pattern in the values.

Output of the new setup.

David Piggott - Heavy Sleeper’s Alarm Clock

47

Development - Breadboarding & Programming

Spot the pattern!
The seconds, although changing value every second, were not the correct values. These are my observations:

• They appeared to be skipping values (e.g. it would go from reading 41 seconds to 48 seconds the next), and counting up to a maximum

of 89 seconds!

• After watching for a few minutes I noticed that it appeared to skip the same values every time.

• I then timed how long it took for the seconds value to return to 0 (it started on zero), and found it to be one minute exactly.

Though observation this confirmed my suspicion - that the values were not random - it did not help advance my attempts to work out the

cause of the problem. In a further attempt to find the pattern, I wrote down every value it showed in a minute and the order they appeared

in. It was as follows:

Second Value Second Value Second Value Second Value Second Value Second Value

0 0 10 16 20 32 30 48 40 64 50 80

1 1 11 17 21 33 31 49 41 65 51 81

2 2 12 18 22 34 32 50 42 66 52 82

3 3 13 19 23 35 33 51 43 67 53 83

4 4 14 20 24 36 34 52 44 68 54 84

5 5 15 21 25 37 35 53 45 69 55 85

6 6 16 22 26 38 36 54 46 70 56 86

7 7 17 23 27 39 37 55 47 71 57 87

8 8 18 24 28 40 38 56 48 72 58 88

9 9 19 25 29 41 39 57 49 73 59 89

David Piggott - Heavy Sleeper’s Alarm Clock

48

06/02/07

I’ve been aware that for the last couple of weeks I have been behind schedule according to my time plan; by now I should be on PCB produc-

tion and yet I’m struggling with the development of my idea, having had quite a few unanticipated problems with it. I decided to include this

progress review for two reasons:

1) To form a summary of what I have achieved so far.

2) To recognise the problems I must overcome before I can proceed with the project.

Development - Progress Review

Achievements
• Designed the ideal system diagram.

• Made working demo board and program for LCD Module.

• Correctly interfaced power MOSFET and Fan with PICAXE.

• Discovered that numbers from variables cannot be printed

to LCD when using I2C.

• Subsequently recognised the need to separate the clock and

LCD, so I2C can be used for clock and serial out for LCD.

• Correctly interfaced DS1307 clock IC with PICAXE via I2C.

• Discovered components of the time and date are printed

incorrectly.

• Decided to use case idea one for the product casing.

Problems
1. Need to fix the time and date printing.

2. Need to do research to find an appropriate sound output for

when the assertive part of the wake-up call begins.

3. Need to find some momentary action digital inputs for the menu

system (currently using PTB switches on breadboard for program

development).

4. Need to develop the lamp override dimmer part of the system.

5. Need to find an appropriate power supply for the finished prod-

uct (having to plug it into a bench power supply is not ideal; addi-

tionally, the bench power supplies are not capable of providing

the current for a 100w lamp).

6. Need to get permission to use a 50w bulb and Delta 80mm fan

instead of the insufficient 20W bulb and generic fan (which out-

puts 40CFM as opposed to the 80CFM of the delta - more impor-

tantly though I don’t believe the breeze created would wake any-

one up).s

David Piggott - Heavy Sleeper’s Alarm Clock

49

Exhausted of ideas for what could be the problem with my program, jumping from 41 seconds to 48 seconds etc. I decided to try an alterna-

tive method of problem solving; see if anyone else had had similar problems. I checked the PICAXE user forums and searched for threads with

the keyword ‘DS1307’. After trawling through pages of irrelevant results I found a gem of a thread containing the following sample program

for using the DS1307:

Development - A Programming Revelation

; Example of how to use DS1307 Time

Clock (i2c device)

; Note the data is sent/received in

BCD format.

symbol seconds = b0

symbol mins = b1

symbol hour = b2

symbol day = b3

symbol date = b4

symbol month = b5

symbol year = b6

symbol control = b7

symbol temp = b8

' set DS1307 slave address

i2cslave %11010000, i2cslow, i2cbyte

' uncomment this line to update the

clock time

' goto start_clock

' read time and date and display on

serial LCD module

init:

serout 7,N2400,(254,1) 'clear LCD

pause 30

main:

readi2c 0,

(seconds,mins,hour,day,date,month,ye

ar)

'debug b0 '(optional debug computer

to screen)

serout 7,N2400,(254,192)

let temp = date & %00110000 / 16

serout 7,N2400,(#temp)

let temp = date & %00001111

serout 7,N2400,(#temp,"/")

let temp = month & %00001000 / 16

serout 7,N2400,(#temp)

let temp = month & %00001111

serout 7,N2400,(#temp,"/")

let temp = year & %11110000 / 16

serout 7,N2400,(#temp)

let temp = year & %00001111

serout 7,N2400,(#temp," ")

serout 7,N2400,(254,128)

let temp = hour & %00110000 / 16

serout 7,N2400,(#temp)

let temp = hour & %00001111

serout 7,N2400,(#temp,":")

let temp = mins & %01110000 / 16

serout 7,N2400,(#temp)

let temp = mins & %00001111

serout 7,N2400,(#temp,":")

let temp = seconds & %01110000 / 16

serout 7,N2400,(#temp)

let temp = seconds & %00001111

serout 7,N2400,(#temp)

pause 100

goto main

David Piggott - Heavy Sleeper’s Alarm Clock

50

'write time and date e.g. to 11:59:00 on Thurs 25/12/03

start_clock:

let seconds = $00 ' 00 Note all BCD format

let mins = $59 ' 59 Note all BCD format

let hour = $11 ' 11 Note all BCD format

let day = $03 ' 03 Note all BCD format

let date = $25 ' 25 Note all BCD format

let month = $12 ' 12 Note all BCD format

let year = $03 ' 03 Note all BCD format

let control = %00010000 ' Enable output at 1Hz

writei2c 0,

(seconds,mins,hour,day,date,month,year,control)

goto main

end

Development - A Programming Revelation

The fact that the program was written to output via serout confirms what

I had thought regarding writing to the LCD with I2C; it is presumably not

possible as I would expect the above sample program to be written for

I2C if it were otherwise.

I had to modify the program so that the serout commands output to out-

put 0 instead of output 7 as shown in the above program.

Having done this, I downloaded and ran the program on the PICAXE. Suc-

cess, it worked! The screen output is shown on the left.

Note that the date is considerable later than you might expect at this

stage in development - this is because I took the photo quite a while after

this stage in development, and did not think to correct the date for the

sake of documentation. Also note the addition of a potentiometer to the

breadboard; by the time I had taken this photo I had started work on the

lamp override dimmer.

Finally, correct time and date output!

David Piggott - Heavy Sleeper’s Alarm Clock

51

Development - False Assumptions

In order to proceed with the development of the rest of the program, it was crucial that I understand what had caused the ‘number jumping’

problem, and how this sample program that I found fixed it. The best way of explaining this is to start by examining the assumptions I had

made, and what was wrong with them.

Not Pure Binary Encoding
I had assumed all along that the values stored in the byte registers of the DS1307 were encoded as pure binary. The simplest way of clarifying

what I mean here is with a few examples.

Let’s say that the second should read as 45. If the values actually were stored in the DS1307 in pure binary the seconds register would read:

This is shown by the table below:

However when the programs I had written read 00101101 from the seconds byte register of the DS1307, 45 was not the number printed to the

screen. Of course, I didn’t know what binary value corresponded with the 45th second but that is not the point.

00101101

0 0 1 0 1 1 0 1

0 0 32 0 8 4 0 1

n/a

45

128 64 32 16 8 4 2 1 255 Bit Value

Bit Status

Decimal Value

 Totals

David Piggott - Heavy Sleeper’s Alarm Clock

52

Development - False Assumptions

Binary Coded Decimals
I was wrong in assuming the values contained in the DS1307 byte registers are pure binary; they are actually stored as binary coded decimals.

Up until now I had not realised the significance of prefixing the values with a $ when writing data to the DS1307, I’d just done it anyway be-

cause that is what is done in the examples in the AXE033 and 034 datasheet. For example:

I was aware that the $ character tells the compiler that the value following it is a binary coded decimal but simply hadn’t thought about what

this meant.

Extract from the Wikipedia article on Binary Coded Decimals (see appendix A for full article and citation):

writei2c 0, ($00, $01, $21, $02, $05, $02, $07, $10)

In computing and electronic systems, Binary-coded decimal (BCD) is an encoding for decimal numbers in which each digit is represented by its

own binary sequence. Its main virtue is that it allows easy conversion to decimal digits for printing or display and faster decimal calculations.

Its drawbacks are the increased complexity of circuits needed to implement mathematical operations and a relatively inefficient encoding – 6

wasted patterns per digit. Even though the importance of BCD has diminished [citation needed], it is still widely used in financial, commercial,

and industrial applications.

...(continued)…

To BCD-encode a decimal number using the common encoding, each digit is encoded using the four-bit binary bit pattern for each digit. For

example, the number 127 would be:

0001 0010 0111

Since most computers store data in eight-bit bytes, there are two common ways of storing four-bit BCD digits in those bytes:

David Piggott - Heavy Sleeper’s Alarm Clock

53

Development - False Assumptions

each digit is stored in one byte, and the other four bits are then set to all zeros, all ones (as in the EBCDIC code), or to 0011 (as in the ASCII

code)

two digits are stored in each byte.

Unlike pure binary encodings large numbers can easily be displayed by splitting up the nibbles and sending each to a different character with

the logic for each display being a simple mapping function. Converting from pure binary to decimal for display is much harder involving integer

multiplication or divide operations. The BIOS in many PCs keeps the date and time in BCD format, probably for historical reasons (it avoided

the need for binary to ASCII conversion).

...(continued)…

BCD is very common in electronic systems where a numeric value is to be displayed, especially in systems consisting solely of digital logic, and

not containing a microprocessor. By utilising BCD, the manipulation of numerical data for display can be greatly simplified by treating each

digit as a separate single sub-circuit. This matches much more closely the physical reality of display hardware—a designer might choose to use

a series of separate identical 7-segment displays to build a metering circuit, for example. If the numeric quantity were stored and manipulated

as pure binary, interfacing to such a display would require complex circuitry. Therefore, in cases where the calculations are relatively simple

working throughout with BCD can lead to a simpler overall system than converting to 'pure' binary.

The same argument applies when hardware of this type uses an embedded microcontroller or other small processor. Often, smaller code re-

sults when representing numbers internally in BCD format, since a conversion from or to binary representation can be expensive on such lim-

ited processors. For these applications, some small processors feature BCD arithmetic modes, which assist when writing routines that manipu-

late BCD quantities.

David Piggott - Heavy Sleeper’s Alarm Clock

54

Development - False Assumptions

This is the key to the whole problem. Using the 45th second as an example, I shall run through everything to clarify things.

When it actually is the 45th second, the seconds register of the DS1307 contains the value 45 as a binary coded decimal in it. For the purposes

of this example it is necessary to convert 45 to BCD format. To start with, the number is split into its component digits; 4, and 5.

As the Wikipedia article states, two digit binary coded decimals may be stored in the nibbles of a single byte. This is true with the DS1307. Be-

low is a visualisation of a byte (I have labelled the bits b0 through b7 - this labelling is not to be confused with the names of the byte variables

used in BASIC programming):

The way data is stored as binary coded decimals in the DS1307 is illustrated below:

As can be seen the byte is split into nibbles and in these nibbles, the values 4 and 5 are stored. As one would expect, the 4 (tens) is stored in

the most significant bits (b4 to b7) and the 5 (units) is stored in the least significant bits (b0 to b3).

Decimal 4 in binary is and decimal 5 in binary is It should be clear therefore that decimal 45, when stored as a binary coded

decimal in a single byte, will be as the two nibbles are just joined together to form a byte.

To work out the value stored in it, process I have just described is reversed; the byte is split into two nibbles, and the decimal value of the left

hand side nibble is the tens while that of the right hand side nibble is the units.

It is interesting to find the decimal value when this byte is assumed to be pure binary encoding, since this is what I had programmed the PI-

CAXE to do and hence why the seconds were exhibiting that ‘jumping’ phenomena I described.

b7 b6 b5 b4 b3 b2 b1 b0

b7 b6 b5 b4 b3 b2 b1 b0

0100 0101

01000101

David Piggott - Heavy Sleeper’s Alarm Clock

55

Development - False Assumptions

Pattern found!
I created a set of tables which show for the range 0 to 59, the binary equivalent of the binary coded decimal seconds value. From this, I then

calculated the decimal interpretation when the binary is assumed to be pure (as opposed to binary coded decimals).

Rather than calculating these values by hand with the table conversion system I used for illustrational purposes earlier, I used the Calculator

program included with Microsoft Windows; in scientific mode it supports hex, dec, oct and bin notation; to convert BCD to bin it was simply a

case of entering the BCD value in hex mode (hex and BCD are one and the same in this context), then changing the view mode to bin. For the

decimal value I just changed the view mode to dec. I have inserted spaces between the nibbles so that it is easier to recognise the pattern as

the units and tens increase.

(tables continued overleaf)

BCD Bin Dec

0 0000 0000 0

1 0000 0001 1

2 0000 0010 2

3 0000 0011 3

4 0000 0100 4

5 0000 0101 5

6 0000 0110 6

7 0000 0111 7

8 0000 1000 8

9 0000 1001 9

BCD Bin Dec

10 0001 0000 16

11 0001 0001 17

12 0001 0010 18

13 0001 0011 19

14 0001 0100 20

15 0001 0101 21

16 0001 0110 22

17 0001 0111 23

18 0001 1000 24

19 0001 1001 25

BCD Bin Dec

20 0010 0000 32

21 0010 0001 33

22 0010 0010 34

23 0010 0011 35

24 0010 0100 36

25 0010 0101 37

26 0010 0110 38

27 0010 0111 39

28 0010 1000 40

29 0010 1001 41

David Piggott - Heavy Sleeper’s Alarm Clock

56

Development - False Assumptions

Pattern matched!

From the tables it can be seen that no ‘jumping’ occurs for BCD values with the same tens value; it is only when the tens value increases that

jumps occur in the decimal equivalent, and every time it is an increase of 7 (it is interesting to note that 7 is the difference between 16 and 9,

where 16 is the range of values expressible in a single nibble and 9 is the highest number expressible in a single character as a decimal, though

I shall not explain the significance as it is beyond the scope of this documentation and is not important to the creation of my alarm clock!).

When the full set of decimal interpretations on BCD values from the above tables is compared to the set of numbers I observed the LCD cycle

through when I was interpreting the DS1307 registers as pure binary, they match up exactly. In other words, the seconds column of my obser-

vations table match up with the BCD column of the above table, and the value column of the observation table matches up with the dec col-

umn of the above tables I created.

BCD Bin Dec

30 0011 0000 48

31 0011 0001 49

32 0011 0010 50

33 0011 0011 51

34 0011 0100 52

35 0011 0101 53

36 0011 0110 54

37 0011 0111 55

38 0011 1000 56

39 0011 1001 57

BCD Bin Dec

40 0100 0000 64

41 0100 0001 65

42 0100 0010 66

43 0100 0011 67

44 0100 0100 68

45 0100 0101 69

46 0100 0110 70

47 0100 0111 71

48 0100 1000 72

49 0100 1001 73

BCD Bin Dec

50 0101 0000 80

51 0101 0001 81

52 0101 0010 82

53 0101 0011 83

54 0101 0100 84

55 0101 0101 85

56 0101 0110 86

57 0101 0111 87

58 0101 1000 88

59 0101 1001 89

David Piggott - Heavy Sleeper’s Alarm Clock

57

Development - BCDs and Programming

Advantage of BCDs
As stated in the Wikipedia article I quoted on binary coded decimals, the advantage of BCDs is that they simplify the printing of numbers to

displays. This is because they remove the requirement for padding. What I mean by this is best illustrated by a picture - the display reads:

As can be seen the minutes are printed as “0”. This simply is not normal for timekeeping devices; it should be printed “00”. The same applies

if the value were 4 - it should be printed “04” not “4”. If the data actually was stored in the DS1307 registers as pure binary, I would have had

to develop a way of adding padding where necessary.

I think this would actually have been quite simple - just a case of checking the value to be printed before it is, and if it’s less than 10, going to a

subroutine that prints a 0 to the display before returning and printing the single unit character. It is the fact that the tens and units are stored

as separate values that removes the need for this with BCDs.

Disadvantage of BCDs
The Wikipedia article on BCDs also states;

as I was to discover later when developing the setup menu system. The same also applies for subtraction, as I also discovered when writing

the setup menu system.

Some operations are more complex to implement. Adders require extra logic to cause them to wrap and generate a carry early. 15%-20%

more circuitry is needed for BCD add compared to pure binary.

David Piggott - Heavy Sleeper’s Alarm Clock

58

Development - BCDs and Programming

Now that I knew what the problem was, I needed to know how the sample program I found worked around it. The answer lies in a block of

code that occurs several times in the program:

It is reasonable obvious that the above block prints the seconds to screen based on the fact that it reads information from the variable with

symbol ‘seconds’.

Since I now know how the data is stored in the DS1307, it is reasonable simple to interpret the above block since I already know what it does.

The data contained in the seconds variable is the seconds value in BCD format. In order to print it to the LCD, the byte must be split into two

to obtain the tens and units values, which can then be printed to the LCD.

The first line

contains several things I hadn’t encountered before in BASIC. Together these work to extract the tens value from the seconds variable into the

temp variable which is then printed to the LCD on the second line. The first part is quite simple; the “let temp = “ part is an assignment opera-

tor which loads the return value of the expression to the right into the byte variable temp - simple enough.

let temp = seconds & %01110000 / 16

serout 7,N2400,(#temp)

let temp = seconds & %00001111

serout 7,N2400,(#temp)

let temp = seconds & %01110000 / 16

David Piggott - Heavy Sleeper’s Alarm Clock

59

Development - BCDs and Programming

Stepping through the code
Examining the right hand side more closely, I have labelled the different parts of the code:

This example should make it clear what the code does. I shall use an actual seconds value of 45 again for this example. From the conversions

tables I created, a seconds value of 45 is

in binary. Before I continue, bitmasks and bitwise operators need to be introduced. From the Wikipedia article on masks:

&

bitwise AND operator

%01110000

binary constant used as bitmask (% in-

structs compiler that it is in binary notation)

/

divide operator

16

divisor

seconds

byte variable

0100 0101

In computer science, a mask is some data that, along with an operation, is used in order to extract information stored elsewhere.

The most common mask used, also known as a bitmask, extracts the status of certain bits in a binary string or number. For example, if we

have the binary string 10011101 and we want to extract the status of the fifth bit counting along from the most significant bit, we would use a

bitmask such as 00001000 and use the bitwise AND operator. Recalling that 1 AND 1 = 1, with 0 otherwise, we find the status of the fifth bit,

since

10011101 AND 00001000 = 00001000

Likewise we can set the fifth bit by applying the mask to the data using the OR operator.

…(continued)…

David Piggott - Heavy Sleeper’s Alarm Clock

60

Development - BCDs and Programming

Substituting the binary seconds value back into the line gives:

(Note I have used a % to denote that the it is in binary notation).

I have created a table to illustrate the function of the bitwise AND operator:

As can be seen this gives a return value of

which as a decimal is 64. The final operator in the line is the division operator, which divides the return value of the bitwise AND operator by

16:

64 / 16 = 4

Recalling that the seconds value I used in this example was 45, this shows that the first line will load the tens value (4) into the temp variable

and print it to the LCD.

You can also use bitmasks to easily check the state of individual bits regardless of the other bits. To do this, you simply turn off all the other

bits using the bitwise AND as discussed above and see if the resulting value is 0. If it is, then the bit was off, but if the value is any other value,

then the bit was on. What makes this so convenient is that you do not need to figure out what the value actually is, you just need to know

that it is not 0.

let temp = %01000101 & %01110000 / 16

Left Hand Value 0 1 0 0 0 1 0 1

Right Hand Value 0 1 1 1 0 0 0 0

Return Value 0 1 0 0 0 0 0 0

01000000

David Piggott - Heavy Sleeper’s Alarm Clock

61

Development - BCDs and Programming

Running through the same procedure but this time for the third line. Notice the bitmask is different - it masks off the tens instead, returning

the units - and there is no division by 16:

The binary return value

is 5 as a decimal.

Recalling that the seconds value was 45, that the first two lines of the code block printed 4 to the screen, and the second two lines print 5 to

the screen, I have demonstrated how the sample program works, and in doing so ensured that I fully understand the process.

let temp = %01000101 & %00001111

Left Hand Value 0 1 0 0 0 1 0 1

Right Hand Value 0 0 0 0 1 1 1 1

Return Value 0 0 0 0 0 1 0 1

00000101

David Piggott - Heavy Sleeper’s Alarm Clock

62

For the sake of completeness I have

included, shown on the left, a pic-

ture of the breadboard with the

100k potentiometer I connected to

the PICAXE analogue 1 in pin

(physical pin 18). I connected the

ends of the potentiometer to +5v

and 0v.

The programming of the dimming

function is detailed in ’Putting it all

together’.

Development - Lamp Dimming

Breadboard with 100k potentiometer for lamp dimming

David Piggott - Heavy Sleeper’s Alarm Clock

63

Development - Putting it all together (Programming)

After several weeks of slow progress I had finally managed to get to the point of writing the fully featured program. Knowing that the program

would be very long and quite complicated compared to those I had already written, I decided the best way of setting about this task would be

to break it into smaller components.

Program components
1. Initialisation

2. Polling

3. Time display

4. Setup menus

5. Lamp override

6. Wake-up call

Program flow
Shown on the right is a diagram of the program flow, showing

how the different program components relate to each other.

Below follow descriptions of the function of each program

component.

Initialisation
A lot of it is obvious; there is the familiar 500ms pause to al-

low the LCD driver IC to initialise. I have however added, just

after the 500ms wait, a clear command so that the display is a

blank canvas prior to anything being printed to it followed by

the required 30ms wait.

I avoided using the clear command anywhere else in the program because of the problem I encountered previously in development. This was

because the clear command requires a 30ms wait to allow clearing to complete, and had caused the unwanted scrolling effect prior to me re-

moving it. However, a 30ms wait at the start of the program is not a problem and it is useful to have it there so I can be certain the display is

Program flow diagram

Init

Poll

Clock

Setup Wake-up

Lamp

David Piggott - Heavy Sleeper’s Alarm Clock

64

Development - Putting it all together (Programming)

blank when the program starts.

The setup of the I2C bus for communication with the DS1307 is also familiar because I have done so before, and the same applies for the input

symbols (though this program will be the first time I use them).

The part of the init stage that required the most thought was planning which variables to store what data in. The PICAXE has a total of 14 byte

variables available. In order to assign this efficiently I had to think ahead work out what information I would need to have available in the pro-

gram. The init block is shown below:

1 init:

2 ' Let the LCD Firmware initialise and clear the

screen

3 pause 500

4 serout 0,N2400,(254,1)

5 pause 30

6

7 ' Set up the i2c bus

8 i2cslave %11010000, i2cslow, i2cbyte

9

10 ' Memory locations

11 symbol seconds = b0

12 symbol mins = b1

13 symbol hour = b2

14 symbol day = b3

15 symbol date = b4

16 symbol month = b5

17 symbol year = b6

18 symbol control = b7

19 symbol alarmmin = b8

20 symbol alarmhour = b9

21 symbol fullweekalarm = b10

22 symbol fademins = b11

23 symbol dismissmins = b12

24 symbol temp = b13

25

26 ' Set up the input symbols

27 symbol UP = pin0

28 symbol DOWN = pin1

29 symbol SET = pin7

David Piggott - Heavy Sleeper’s Alarm Clock

65

Development - Putting it all together (Programming)

When planning my usage of the available byte variables I had to consider what information I

would need available in the program. While on the topic of memory management, it is appropri-

ate to mention the register locations of the DS1307. Shown on the right is a diagram, copied from

the DS1307 datasheet, of the DS1307 registers.

It can now be seen quite clearly that the values are stored as binary coded decimals, shown by

the splitting of the bytes into nibbles.

Polling
The polling section of the program is the main section that every other program component re-

turns to when complete. The polling section performs three main tasks:

1. Polls for SET button being pressed and if true jumps to the setup menu component.

2. Checks if the wake-up call should be run (i.e. is it time to wake up).

3. Jumps to the clock section if neither of the above are true, which prints the time and date to the screen.

4. Update the lamp brightness based on the position of the lamp dimmer potentiometer.

Register location table

1 poll:

2 ' Poll for lamp level change

3 gosub lamp

4

5 ' Reads data from clock chip

6 readi2c 0,

(seconds,mins,hour,day,date,month,year,control,alarmmin,

alarmhour,fullweekalarm,fademins,dismissmins)

7

8 ' Ensure control value is correct (not user

configurable)

9 let control = 16

10

11 ' Poll for setup button press

12 if SET = 1 then setup

13

14 ' Is it the weekend?

15 'IF b3=7 OR b3=1 THEN

16 ' IF b10 = 1 THEN

17 ' IF b1 = b8 AND b2 = b9 THEN goto

wakeup

18 ' ENDIF

19 'ELSE

20 ' IF b1 = b8 AND b2 = b9 THEN goto wakeup

21 'ENDIF

22

David Piggott - Heavy Sleeper’s Alarm Clock

66

Development - Putting it all together (Programming)

I have described the logic of the polling block that checks whether it is time to wake up in more detail below:

Because I have implemented the option of disabling the wake-up call at weekends, the first stage in determining whether the wake-up call is

checking whether it is the weekend, and if it is, checking if the alarm is enabled for weekends. If it is not the weekend, or it is the weekend

and the alarm is enabled at weekends, the program then checks if the realtime hour is equal to the alarm hour. If this is true it then checks if

the realtime minute is equal to the alarm minutes. If this is true it jumps to the wakeup section. I had originally written the wakeup logic as

follows (notice it is commented out):

But was given a compile error when attempting to download the program to the PICAXE. After much experimentation I found that the Pro-

gramming Editor wouldn’t accept the syntax of the if statements and so I had to write it out at a more basic level as visible at the top of the

page.

14 ' Is it the weekend?

15 'IF b3=7 OR b3=1 THEN

16 ' IF b10 = 1 THEN

17 ' IF b1 = b8 AND b2 = b9 THEN goto wakeup

18 ' ENDIF

19 'ELSE

20 ' IF b1 = b8 AND b2 = b9 THEN goto wakeup

21 'ENDIF

23 if day = 1 then ifallweek

24 if day = 7 then ifallweek

25

26 iftime:

27 if hour != alarmhour then clock

28 if mins != alarmmin then clock

29 goto wakeup

30

31 ifallweek:

32 if fullweekalarm = 1 then iftime

David Piggott - Heavy Sleeper’s Alarm Clock

67

Development - Putting it all together (Programming)

Clock
This section of the program simply prints the time & date to the screen and is the default screen. The code is remarkably simple:

This is because I have made use of subroutines for printing the date and time. This was necessary because without them my program ex-

ceeded the maximum program size of 2048 bytes, so I had to optimise it via the use of subroutines for repeated sections of the code (the

printdate and printtime sections are used several times in the setup menus).

Print Routines
Though not shown on the program flow diagram, I have included the print routines here to clarify what I described above:

1 clock:

2 serout 0,N2400,(254,192)

3 gosub printdate

4 serout 0,N2400,(254,128)

5 gosub printtime

6 goto poll

1 printtime:

2 let temp = hour & %00110000 / 16

3 serout 0,N2400,(#temp)

4 let temp = hour & %00001111

5 serout 0,N2400,(#temp,":")

6

7 let temp = mins & %01110000 / 16

8 serout 0,N2400,(#temp)

9 let temp = mins & %00001111

10 serout 0,N2400,(#temp,":")

11

12 let temp = seconds & %01110000 / 16

13 serout 0,N2400,(#temp)

14 let temp = seconds & %00001111

15 serout 0,N2400,(#temp)

16 return

17

18 printdate:

19 let temp = date & %00110000 / 16

20 serout 0,N2400,(#temp)

21 let temp = date & %00001111

22 serout 0,N2400,(#temp,"/")

23

24 let temp = month & %00010000 / 16

David Piggott - Heavy Sleeper’s Alarm Clock

68

Development - Putting it all together (Programming)

These subroutines print to the current cursor position on the LCD. This is to ensure maximum flexibility of use throughout the rest of the pro-

gram.

Lamp Override
The lamp override subroutine is called by the poll section to update the brightness of the lamp based on the position of the lamp dimmer po-

tentiometer. The code is as follows:

The readadc10 command returns a 10 bit value (i.e. ranging from 0 to 1023 decimal) that represents the voltage at the pin specified. Because

the value is 10 bit, it cannot be stored in a byte variable and instead must be stored in a word (two byte) variable. Because the lamp subrou-

tine is called before the byte variables are updated from the DS1307 it doesn’t matter that writing to w0 (word variable 0) will cause the val-

ues of b0 and b1 to be overwritten (the byte and word variables use the same memory space).

25 serout 0,N2400,(#temp)

26 let temp = month & %00001111

27 serout 0,N2400,(#temp,"/")

28

29 let temp = year & %11110000 / 16

30 serout 0,N2400,(\"20\",#temp)

31 let temp = year & %00001111

32 serout 0,N2400,(#temp," ")

33 return

34

35 printalarmtime:

36 let temp = alarmhour & %00110000 / 16

37 serout 0,N2400,(#temp)

38 let temp = alarmhour & %00001111

39 serout 0,N2400,(#temp,":")

40

41 let temp = alarmmin & %01110000 / 16

42 serout 0,N2400,(#temp)

43 let temp = alarmmin & %00001111

44 serout 0,N2400,(#temp," ")

45 return

1 lamp:

2 readadc10 2,w0

3 pwmout 3,249,w0

4 return

David Piggott - Heavy Sleeper’s Alarm Clock

69

Development - Putting it all together (Programming)

The pwmout 3,249,w0 command is a little more complicated. The 3 specifies which pin to output on, while 249 is the period and w0 means

that the value of w0 is used as the duty cycle.

The complexity was in matching the period to the range of values that the duty cycle variable can have (0 to 1023 as already described). In or-

der to find out the necessary period value for the duty cycle to reach 100% when the dimmer is at full, I used the pwmout wizard dialogue

available in the PICAXE Programming Editor software and experimented with the PWM frequency value until I found a value that was derived

from a duty cycle of 1023.

I found that a desired PWM frequency value of 4000MHz resulted in a PWM command with 249 as the period and 1000 as the duty cycle (for

100% power) - as close to 1023 as I could get it.

Wake-up Call
The wake-up call is as the name suggests the section of the program that switches the fan on and slowly increases the duty cycle of the PWM

MOSFET over the period specified by the fademins byte value (as the name suggests, measured in minutes). It then keeps the outputs running

at full intensity for the period specified by the dismissmins byte value (again measured in minutes). Because the program that I am document-

ing here is the one I wrote for the breadboard, there is no code for the sound output because there wasn’t one. See the PCB program docu-

mentation for sound output code. The breadboard code is as follows:

1 wakeup:

2 serout 0,N2400,(254,128,"Wake-up!")

3

4 let b0 = 0

5 let w1 = fademins * 300

6 for b0 = 0 to 200

7 pwmout 3,49,b0

8 pause w1

9 next b0

10

11 let w1 = dismissmins * 1000

12 pause w1

13 pwmout 3,0,0

14

15 serout 0,N2400,(254,1)

16 goto poll

David Piggott - Heavy Sleeper’s Alarm Clock

70

Development - Putting it all together (Programming)

Again the code is fairly short. However there was little bit of calculation involved, for the intensity and timing.

 “Wake-up!” is printed to the top line of the LCD, while the date, month and year remain on the bottom line (as they were written to the LCD

by the clock routine).

The first loop is for the ‘gentle’ part of the wake-up call; it loops 200 times and each time a pwmout command is executed with the loop

counter variable used as the duty cycle parameter. The number of loops is 200 for two reasons:

1) It must be less than 255 to avoid having to use a word variable - as I already described memory is a scarce resources when programming

for the PICAXE.

2) 200 is a nice round number for use as the maximum duty cycle reached.

I then had to work out the necessary period of the pwmout command so that the intensity reaches maximum when the duty cycle is 200. I did

this using the same technique I described on the previous page.

That was the first calculation for the ‘gentle’ wake-up call, concerning intensity. The second calculation was for the timing; the fademins vari-

able contains the number of minutes during which to fade in. I used the pause command in the loop to implement a wait every time the loop

runs. The period of a pause is measured in ms, so I needed to convert the fademins variable into a value that would equal 1/200 of 15 mins

(1/200 because the loop runs 200 times). I formed an equation linking the pause parameter and the fademins parameter, where p is the

pause value and f is the fademins value. I then rearranged it to get an equation for p in terms of f:

200 60 1000

200 60000

60000

200

300

p f

p f

f
p

p f

× = × ×

=

=

=

David Piggott - Heavy Sleeper’s Alarm Clock

71

Development - Putting it all together (Programming)

The line:

preceding the gentle wake-up loop defines the pause value for use in the loop:

It was necessary to use a word variable because even with a fademins of value the pause value is greater than 255! The maximum fademins

value that can be set via the setup menu is 60, and 60 x 300 = 18000 so the word variable is more than adequate for the range of values it

must contain.

The second part of the wake-up call:

is the ‘assertive’ part of the wake-up call. The code is much simpler because all the program must do is wait for the number of minutes speci-

fied by the dismissmins variable - this is simply a case of multiplying the dismissmins value by 1000 and storing it in a word variable for use by

the pause command. Once the waiting is complete the program switches off the outputs, clears the screen, and jumps to the polling block.

Because the program I am documenting here is the breadboard version, there is no implementation of separate control for the fan and lamp,

since I hadn’t set up the necessary extra MOSFET.

let w1 = fademins * 300

pause w1

11 let w1 = dismissmins * 1000

12 pause w1

13 pwmout 3,0,0

14

15 serout 0,N2400,(254,1)

16 goto poll

David Piggott - Heavy Sleeper’s Alarm Clock

72

Development - Putting it all together (Programming)

Setup

1 setup:

2 serout 0,N2400,(254,1)

3

4 sethour:

5 if hour > $23 then resethour

6

7 serout 0,N2400,(254,128,"Hour:",254,192)

8

9 gosub printtime

10

11 pause 100

12 if UP = 1 then inchour

13 if DOWN = 1 then dechour

14 if SET = 1 then setmins

15 goto sethour

16

17 inchour:

18 let temp = hour & %00001111

19 if temp = 9 then inchourtens

20 let hour = hour + $01

21 goto sethour

22 inchourtens:

23 let temp = hour & %00110000

24 let hour = temp + $10

25 goto sethour

26 dechour:

27 if hour = $00 then fullhour

28 let temp = hour & %00001111

29 if temp = 0 then dechourtens

30 let hour = hour - $01

31 goto sethour

32 dechourtens:

33 let temp = hour & %00110000

34 let hour = temp - $10

35 let hour = hour + $09

36 goto sethour

37 resethour:

38 let hour = $00

39 goto sethour

40 fullhour:

41 let hour = $23

42 goto sethour

43

44 setmins:

45 if mins > $59 then resetmins

46

47 serout 0,N2400,(254,128,"Minutes:",254,192)

48

49 gosub printtime

50

51 pause 100

52 if UP = 1 then incmins

53 if DOWN = 1 then decmins

54 if SET = 1 then setseconds

55 goto setmins

56

David Piggott - Heavy Sleeper’s Alarm Clock

73

Development - Putting it all together (Programming)

 57 incmins:

58 let temp = mins & %00001111

59 if temp = 9 then incminstens

60 let mins = mins+ $01

61 goto setmins

62 incminstens:

63 let temp = mins & %01110000

64 let mins = temp + $10

65 goto setmins

66 decmins:

67 if mins = $00 then fullmins

68 let temp = mins & %00001111

69 if temp = 0 then decminstens

70 let mins = mins - $01

71 goto setmins

72 decminstens:

73 let temp = mins & %01110000

74 let mins = temp - $10

75 let mins = mins + $09

76 goto setmins

77 resetmins:

78 let mins = $00

79 goto setmins

80 fullmins:

81 let mins = $59

82 goto setmins

83

84 setseconds:

85 if seconds > $59 then resetseconds

86

87 serout 0,N2400,(254,128,"Seconds:",254,192)

88

89 gosub printtime

90

91 pause 100

92 if UP = 1 then incseconds

93 if DOWN = 1 then decseconds

94 if SET = 1 then setdayclear

95 goto setseconds

96

97 incseconds:

98 let temp = seconds & %00001111

99 if temp = 9 then incsecondstens

100 let seconds = seconds+ $01

101 goto setseconds

102 incsecondstens:

103 let temp = seconds & %01110000

104 let seconds = temp + $10

105 goto setseconds

106 decseconds:

107 if seconds = $00 then fullseconds

108 let temp = seconds & %00001111

109 if temp = 0 then decsecondstens

110 let seconds = seconds - $01

111 goto setseconds

112 decsecondstens:

113 let temp = seconds & %01110000

114 let seconds = temp - $10

115 let seconds = seconds + $09

116 goto setseconds

117 resetseconds:

118 let seconds = $00

David Piggott - Heavy Sleeper’s Alarm Clock

74

Development - Putting it all together (Programming)

 119 goto setseconds

120 fullseconds:

121 let seconds = $59

122 goto setseconds

123

124 setdayclear:

125 serout 0,N2400,(254,1)

126

127 setdaydisp:

128 serout 0,N2400,(254,128,"Day:")

129 if day = $01 then sunday

130 if day = $02 then monday

131 if day = $03 then tuesday

132 if day = $04 then wednesday

133 if day = $05 then thursday

134 if day = $06 then friday

135 if day = $07 then saturday

136

137 sunday:

138 serout 0,N2400,(254,192,"Sunday ")

139 goto setdaypoll

140 monday:

141 serout 0,N2400,(254,192,"Monday ")

142 goto setdaypoll

143 tuesday:

144 serout 0,N2400,(254,192,"Tuesday ")

145 goto setdaypoll

146 wednesday:

147 serout 0,N2400,(254,192,"Wednesday")

148 goto setdaypoll

149 thursday:

150 serout 0,N2400,(254,192,"Thursday ")

151 goto setdaypoll

152 friday:

153 serout 0,N2400,(254,192,"Friday ")

154 goto setdaypoll

155 saturday:

156 serout 0,N2400,(254,192,"Saturday ")

157 goto setdaypoll

158

159 setdaypoll:

160 pause 100

161 if day > 7 then resetday

162 if day < 1 then fullday

163 if UP = 1 then incday

164 if DOWN = 1 then decday

165 if SET = 1 then setdate

166 goto setdaydisp

167

168 incday:

169 let day = day + 1

170 goto setdaydisp

171 decday:

172 let day = day - 1

173 goto setdaydisp

174 resetday:

175 let day = 1

176 goto setdaydisp

177 fullday:

178 let day = 7

179 goto setdaydisp

180

David Piggott - Heavy Sleeper’s Alarm Clock

75

Development - Putting it all together (Programming)

 181 setdate:

182 if date > $31 then resetdate

183

184 serout 0,N2400,(254,128,"Date: ",254,192)

185

186 gosub printdate

187

188 pause 100

189 if UP = 1 then incdate

190 if DOWN = 1 then decdate

191 if SET = 1 then setmonth

192 goto setdate

193

194 incdate:

195 let temp = date & %00001111

196 if temp = 9 then incdatetens

197 let date = date + $01

198 goto setdate

199 incdatetens:

200 let temp = date & %00110000

201 let date = temp + $10

202 goto setdate

203 decdate:

204 if date = $01 then fulldate

205 let temp = date & %00001111

206 if temp = 0 then decdatetens

207 let date = date - $01

208 goto setdate

209 decdatetens:

210 let temp = date & %00110000

211 let date = temp - $10

212 let date = date + $09

213 goto setdate

214 resetdate:

215 let date = $01

216 goto setdate

217 fulldate:

218 let date = $31

219 goto setdate

220

221 setmonth:

222 if month > $12 then resetmonth

223

224 serout 0,N2400,(254,128,"Month: ",254,192)

225

226 gosub printdate

227

228 pause 100

229 if UP = 1 then incmonth

230 if DOWN = 1 then decmonth

231 if SET = 1 then setyear

232 goto setmonth

233

234 incmonth:

235 let temp = month & %00001111

236 if temp = 9 then incmonthtens

237 let month = month + $01

238 goto setmonth

239 incmonthtens:

240 let temp = month & %00010000

241 let month = temp + $10

242 goto setmonth

David Piggott - Heavy Sleeper’s Alarm Clock

76

Development - Putting it all together (Programming)

 243 decmonth:

244 if month = $01 then fullmonth

245 let temp = month & %00001111

246 if temp = 0 then decmonthtens

247 let month = month - $01

248 goto setmonth

249 decmonthtens:

250 let temp = month & %00010000

251 let month = temp - $10

252 let month = month + $09

253 goto setmonth

254 resetmonth:

255 let month = $01

256 goto setmonth

257 fullmonth:

258 let month = $12

259 goto setmonth

260

261 setyear:

262 if year > $99 then resetyear

263

264 serout 0,N2400,(254,128,"Year: ",254,192)

265

266 gosub printdate

267

268 pause 100

269 if UP = 1 then incyear

270 if DOWN = 1 then decyear

271 if SET = 1 then setalarmhour

272 goto setyear

273

274 incyear:

275 let temp = year & %00001111

276 if temp = 9 then incyeartens

277 let year = year + $01

278 goto setyear

279 incyeartens:

280 let temp = year & %11110000

281 let year = temp + $10

282 goto setyear

283 decyear:

284 if year = $00 then fullyear

285 let temp = year & %00001111

286 if temp = 0 then decyeartens

287 let year = year - $01

288 goto setyear

289 decyeartens:

290 let temp = year & %11110000

291 let year = temp - $10

292 let year = year + $09

293 goto setyear

294 resetyear:

295 let year = $00

296 goto setyear

297 fullyear:

298 let year = $99

299 goto setyear

300

301 setalarmhour:

302 if alarmhour > $23 then resetalarmhour

303

304 serout 0,N2400,(254,128,"Alarm Hour:

David Piggott - Heavy Sleeper’s Alarm Clock

77

Development - Putting it all together (Programming)

 ",254,192)
305

306 gosub printalarmtime

307

308 pause 100

309 if UP = 1 then incalarmhour

310 if DOWN = 1 then decalarmhour

311 if SET = 1 then setalarmmin

312 goto setalarmhour

313

314 incalarmhour:

315 let temp = alarmhour & %00001111

316 if temp = 9 then incalarmhourtens

317 let alarmhour = alarmhour + $01

318 goto setalarmhour

319 incalarmhourtens:

320 let temp = alarmhour & %00110000

321 let alarmhour = temp + $10

322 goto setalarmhour

323 decalarmhour:

324 if alarmhour = $00 then fullalarmhour

325 let temp = alarmhour & %00001111

326 if temp = 0 then decalarmhourtens

327 let alarmhour = alarmhour - $01

328 goto setalarmhour

329 decalarmhourtens:

330 let temp = alarmhour & %00110000

331 let alarmhour = temp - $10

332 let alarmhour = alarmhour + $09

333 goto setalarmhour

334 resetalarmhour:

335 let alarmhour = $00

336 goto setalarmhour

337 fullalarmhour:

338 let alarmhour = $23

339 goto setalarmhour

340

341 setalarmmin:

342 if alarmmin > $59 then resetalarmmin

343

344 serout 0,N2400,(254,128,"Alarm Minutes:

",254,192)

345

346 gosub printalarmtime

347

348 pause 100

349 if UP = 1 then incalarmmin

350 if DOWN = 1 then decalarmmin

351 if SET = 1 then setfullweekalarmdisp

352 goto setalarmmin

353

354 incalarmmin:

355 let temp = alarmmin & %00001111

356 if temp = 9 then incalarmmintens

357 let alarmmin = alarmmin+ $01

358 goto setalarmmin

359 incalarmmintens:

360 let temp = alarmmin & %01110000

361 let alarmmin = temp + $10

362 goto setalarmmin

363 decalarmmin:

364 if alarmmin = $00 then fullalarmmin

David Piggott - Heavy Sleeper’s Alarm Clock

78

Development - Putting it all together (Programming)

 365 let temp = alarmmin & %00001111

366 if temp = 0 then decalarmmintens

367 let alarmmin = alarmmin - $01

368 goto setalarmmin

369 decalarmmintens:

370 let temp = alarmmin & %01110000

371 let alarmmin = temp - $10

372 let alarmmin = alarmmin + $09

373 goto setalarmmin

374 resetalarmmin:

375 let alarmmin = $00

376 goto setalarmmin

377 fullalarmmin:

378 let alarmmin = $59

379 goto setalarmmin

380

381 setfullweekalarmdisp:

382 serout 0,N2400,(254,128,"Weekend Wakeup:")

383 if fullweekalarm = 0 then disfullweekalarm

384 if fullweekalarm = 1 then enfullweekalarm

385

386 disfullweekalarm:

387 serout 0,N2400,(254,192,"Disabled")

388 goto setfullweekalarmpoll

389 enfullweekalarm:

390 serout 0,N2400,(254,192,"Enabled ")

391 goto setfullweekalarmpoll

392

393 setfullweekalarmpoll:

394 pause 100

395 if fullweekalarm > 1 then resetfullweekalarm

396 if UP = 1 then incfullweekalarm

397 if DOWN = 1 then decfullweekalarm

398 if SET = 1 then setfademins

399 goto setfullweekalarmdisp

400

401 incfullweekalarm:

402 let fullweekalarm = fullweekalarm + 1

403 goto setfullweekalarmdisp

404 decfullweekalarm:

405 if fullweekalarm = 0 then fullfullweekalarm

406 let fullweekalarm = fullweekalarm - 1

407 goto setfullweekalarmdisp

408 resetfullweekalarm:

409 let fullweekalarm = 0

410 goto setfullweekalarmdisp

411 fullfullweekalarm:

412 let fullweekalarm = 1

413 goto setfullweekalarmdisp

414

415 setfademins:

416 if fademins > 60 then resetfademins

417 serout 0,N2400,(254,128,"Fade-in time:

",254,192,#fademins," minute(s) ")

418 pause 100

419 if UP = 1 then incfademins

420 if DOWN = 1 then decfademins

421 if SET = 1 then setdismissmins

422 goto setfademins

423

424 incfademins:

425 let fademins = fademins + 1

David Piggott - Heavy Sleeper’s Alarm Clock

79

Development - Putting it all together (Programming)

 426 goto setfademins

427 decfademins:

428 if fademins = 0 then fullfademins

429 let fademins = fademins - 1

430 goto setfademins

431 resetfademins:

432 let fademins = 0

433 goto setfademins

434 fullfademins:

435 let fademins = 60

436 goto setfademins

437

438 setdismissmins:

439 if dismissmins > 60 then resetdismissmins

440 serout 0,N2400,(254,128,"Dismiss time:

",254,192,#dismissmins," minute(s) ")

441 pause 100

442 if UP = 1 then incdismissmins

443 if DOWN = 1 then decdismissmins

444 if SET = 1 then save

445 goto setdismissmins

446

447 incdismissmins:

448 let dismissmins = dismissmins + 1

449 goto setdismissmins

450 decdismissmins:

451 if dismissmins = 0 then fulldismissmins

452 let dismissmins = dismissmins - 1

453 goto setdismissmins

454 resetdismissmins:

455 let dismissmins = 0

456 goto setdismissmins

457 fulldismissmins:

458 let dismissmins = 60

459 goto setdismissmins

460

461 save:

462 serout 0,N2400,(254,1,"Saving...")

463 writei2c 0,

(seconds,mins,hour,day,date,month,year,control,alarmmin,

alarmhour,fullweekalarm,fademins,dismissmins)

464 pause 1000

465 serout 0,N2400,(254,1)

466 goto poll

David Piggott - Heavy Sleeper’s Alarm Clock

80

Development - Putting it all together (Programming)

Setup Explanation
Although there are 466 lines of setup code, which may seem like a lot of programming, many of the blocks are repeated with slight modifica-

tions. The setup screen order is as follows:

1. Realtime hour

2. Realtime minutes

3. Realtime seconds

4. Realtime day

5. Realtime date

6. Realtime month

7. Realtime year

8. Alarm hour

9. Alarm minute

10. Weekend wake-up enable/disable

11. Fade-in time (minutes)

12. Dismiss time (minutes)

All the realtime setup screens with the exception of the day screen are displayed as numeric values to the user, and all are stored as binary

coded decimals - however since the day values range from 0-7, they are only stored in the least significant nibble of the day byte. All the real-

time setup variables, as the names suggest, control the realtime information in the DS1307.

The alarm hour, minute, weekend wake-up, fade-in time, and dismiss-time are all variables which I have created for the alarm clock functions.

The alarm hour and minute are compared with their respective realtime values and as such I decided that the best approach would be to

store these as binary coded decimals, for two reasons:

1. So that the values can easily be displayed on the LCD (see previous explanation of binary coded decimals for justification).

2. So that the values can easily be compared with the realtime values to check for a wake-up condition when polling.

David Piggott - Heavy Sleeper’s Alarm Clock

81

Development - Putting it all together (Programming)

The weekend wakeup is a simple yes or no value and as such the variable I have assigned to this should be 0 or 1.

The fadeinmins and dismissmins are stored as pure decimals so that they can easily be used in the wake-up block; there is no need for them to

be stored as binary coded decimals and infact this would just make things more complicated.

The setup menu system is written such that pressing the set button enters the setup system and on subsequent presses advances to the next

setup screen. Because the program I am documenting is the breadboard program, there is no exit button functionality because I hadn’t put

the necessary button on the breadboard. Pressing the up/down buttons increments/decrements respectively the selected values. For user

friendliness I intended to write the setup menu system so that attempting to increment/decrement the values beyond their range causes

them to loop back i.e. if the minutes variable is 59 and it is incremented, the value will change to 0, and vice versa.

The main difficulty I faced when coding the setup system was the incrementing and decrementing of the binary coded decimal variables. Sim-

ply adding and subtracting a pure decimal value of 1 would not work because this doesn't match the encoding of the variables.

 Once I had written the code for this for one screen it was a relatively simple job adapting it for the subsequent screens. Below is the code for

one menu screen (the realtime hour setup):

4 sethour:

5 if hour > $23 then resethour

6

7 serout 0,N2400,(254,128,"Hour:",254,192)

8

9 gosub printtime

10

11 pause 100

12 if UP = 1 then inchour

13 if DOWN = 1 then dechour

14 if SET = 1 then setmins

15 goto sethour

16

17 inchour:

18 let temp = hour & %00001111

19 if temp = 9 then inchourtens

20 let hour = hour + $01

21 goto sethour

22 inchourtens:

23 let temp = hour & %00110000

24 let hour = temp + $10

25 goto sethour

26 dechour:

27 if hour = $00 then fullhour

David Piggott - Heavy Sleeper’s Alarm Clock

82

Development - Putting it all together (Programming)

The first part of the hour setup screen, the ‘sethour’ block is a sort of miniature polling block; it checks that the hour value is not beyond the

valid range, prints the current value to the screen and polls for up/down/set button presses. I have made use of the printtime subroutine that

I wrote to increase memory efficiency.

The remaining code blocks all combine to perform the incrementing and decrementing of the binary coded decimal values. Because I couldn't

get the program to compile with the enhanced if statements I had to break the logic down into the basic routines as seen above.

In order to correctly increment/decrement the binary coded decimals it was necessary that I take into account the carrying over of units. If the

values were stored as pure binary this wouldn’t have been necessary, but that was not the case.

The necessary steps for binary coded decimal addition and subtraction are to first of all check the value of the units; if the value is to be incre-

mented and the unit is 9, the unit should be set to 0 and it carried over to the tens; i.e. the tens are incremented. If the units value is not 9

then only the units should be incremented.

If the value is to be decremented and the units value is 0, the units value should be set to 0 and the decrement carried over; the tens value

should be decremented. If the value is not 0 then just the units should be decremented.

The above procedure I have described is pretty much primary school addition and subtraction; the challenge was in converting this set of pro-

cedures into a working program.

28 let temp = hour & %00001111

29 if temp = 0 then dechourtens

30 let hour = hour - $01

31 goto sethour

32 dechourtens:

33 let temp = hour & %00110000

34 let hour = temp - $10

35 let hour = hour + $09

36 goto sethour

37 resethour:

38 let hour = $00

39 goto sethour

40 fullhour:

41 let hour = $23

42 goto sethour

David Piggott - Heavy Sleeper’s Alarm Clock

83

In addition to the incrementing/decrementing of the values, checks were necessary to ensure that when the values go outside the range, they

loop back to the other end of the range. The line that checks if the value has exceeded the maximum has already been described, and the pro-

cedure that it jumps to if true can be seen in the above code (the fullhour block).

After my explanation of what the code actually does, it should be reasonably obvious how it works without further description. Because of the

problem I had with more advanced IF syntax, it was necessary to describe the logic in a sequence of more basic if statements with goto state-

ments if true.

I adapted this code for use with the realtime minutes, realtime seconds, realtime date, realtime month, realtime year, alarm hour and alarm

minute screens, changing of course the maximum values, the screen labels and the printing subroutines used for printing the values to screen.

The day setup screen, weekend wakeup screen, fade-in time, and dismiss time screens used different code because they do not require the

procedures for incrementing/decrementing of binary coded decimals.

Development - Putting it all together (Programming)

17 inchour:

18 let temp = hour & %00001111

19 if temp = 9 then inchourtens

20 let hour = hour + $01

21 goto sethour

22 inchourtens:

23 let temp = hour & %00110000

24 let hour = temp + $10

25 goto sethour

26 dechour:

27 if hour = $00 then fullhour

28 28 let temp = hour & %00001111

29 if temp = 0 then dechourtens

30 let hour = hour - $01

31 goto sethour

32 dechourtens:

33 let temp = hour & %00110000

34 let hour = temp - $10

35 let hour = hour + $09

36 goto sethour

37 resethour:

38 let hour = $00

39 goto sethour

40 fullhour:

41 let hour = $23

42 goto sethour

David Piggott - Heavy Sleeper’s Alarm Clock

84

The day and weekend wakeup screens do not control numeric values; or more specifically, they don’t from the users point of view (for maxi-

mum ease of use). In the program they are of course controlled by decimals stored in the byte variables; for day ranges from 1 to 7, where 1 is

Sunday, 2 is Monday, etc.

For the weekend wakeup variable only two values are necessary; 0 for disabled and 1 for enabled (where 1 will cause the wake-up call to be

run at weekends).

As I said these setup screens control non-numeric values from the user point of view yet programmatically they are numeric values. Therefore

it was necessary for me to perform a conversion from the numeric value to a text value when the values are displayed on screen, for user con-

venience. A sample of the code that performs this is below:

Development - Putting it all together (Programming)

124 setdayclear:

125 serout 0,N2400,(254,1)

126

127 setdaydisp:

128 serout 0,N2400,(254,128,"Day:")

129 if day = $01 then sunday

130 if day = $02 then monday

131 if day = $03 then tuesday

132 if day = $04 then wednesday

133 if day = $05 then thursday

134 if day = $06 then friday

135 if day = $07 then saturday

136

137 sunday:

138 serout 0,N2400,(254,192,"Sunday ")

139 goto setdaypoll

140 monday:

141 serout 0,N2400,(254,192,"Monday ")

142 goto setdaypoll

143 tuesday:

144 serout 0,N2400,(254,192,"Tuesday ")

145 goto setdaypoll

146 wednesday:

147 serout 0,N2400,(254,192,"Wednesday")

148 goto setdaypoll

149 thursday:

150 serout 0,N2400,(254,192,"Thursday ")

151 goto setdaypoll

152 friday:

153 serout 0,N2400,(254,192,"Friday ")

154 goto setdaypoll

155 saturday:

156 serout 0,N2400,(254,192,"Saturday ")

157 goto setdaypoll

158

159 setdaypoll:

160 pause 100

161 if day > 7 then resetday

David Piggott - Heavy Sleeper’s Alarm Clock

85

The key part of the numeric to text conversion is the setdaydisp procedure, which is a series of IF statements that combine to form a switch

statement, directing the program to the appropriate block based on the day value. I used a similar approach for the weekend wakeup enable/

disable screen, though with of course only two states; enabled and disabled.

I have included 100ms pauses within all the screen loops, to limit the rate at which the values increment/decrement, and to prevent the user

accidentally moving through more than one setup screen at a time.

This concludes the explanation of the breadboard program components. Included on the following pages is the entire breadboard program, in

one continuous piece.

Development - Putting it all together (Programming)

162 if day < 1 then fullday

163 if UP = 1 then incday

164 if DOWN = 1 then decday

165 if SET = 1 then setdate

166 goto setdaydisp

167

168 incday:

169 let day = day + 1

170 goto setdaydisp

171 decday:

172 let day = day - 1

173 goto setdaydisp

174 resetday:

175 let day = 1

176 goto setdaydisp

177 fullday:

178 let day = 7

179 goto setdaydisp

David Piggott - Heavy Sleeper’s Alarm Clock

86

Development - Final Breadboard Program

1 init:

2 ' Let the LCD Firmware initialise and clear the

screen

3 pause 500

4 serout 0,N2400,(254,1)

5 pause 30

6

7 ' Set up the i2c bus

8 i2cslave %11010000, i2cslow, i2cbyte

9

10 ' Memory locations

11 symbol seconds = b0

12 symbol mins = b1

13 symbol hour = b2

14 symbol day = b3

15 symbol date = b4

16 symbol month = b5

17 symbol year = b6

18 symbol control = b7

19 symbol alarmmin = b8

20 symbol alarmhour = b9

21 symbol fullweekalarm = b10

22 symbol fademins = b11

23 symbol dismissmins = b12

24 symbol temp = b13

25

26 ' Set up the input symbols

27 symbol UP = pin0

28 symbol DOWN = pin1

29 symbol SET = pin7

30

31 poll:

32 ' Poll for lamp level change

33 gosub lamp

34

35 ' Reads data from clock chip

36 readi2c 0,

(seconds,mins,hour,day,date,month,year,control,alarmmin,

alarmhour,fullweekalarm,fademins,dismissmins)

37

38 ' Ensure control value is correct (not user

configurable)

39 let control = 16

40

41 ' Poll for setup button press

42 if SET = 1 then setup

43

44 ' Is it the weekend?

45 'IF b3=7 OR b3=1 THEN

46 ' IF b10 = 1 THEN

47 ' IF b1 = b8 AND b2 = b9 THEN goto

wakeup

48 ' ENDIF

49 'ELSE

50 ' IF b1 = b8 AND b2 = b9 THEN goto wakeup

51 'ENDIF

52

53 if day = 1 then ifallweek

54 if day = 7 then ifallweek

55

56 iftime:

57 if hour != alarmhour then clock

David Piggott - Heavy Sleeper’s Alarm Clock

87

Development - Final Breadboard Program

58 if mins != alarmmin then clock

59 goto wakeup

60

61 ifallweek:

62 if fullweekalarm = 1 then iftime

63

64 clock:

65 serout 0,N2400,(254,192)

66 gosub printdate

67 serout 0,N2400,(254,128)

68 gosub printtime

69 goto poll

70

71 printtime:

72 let temp = hour & %00110000 / 16

73 serout 0,N2400,(#temp)

74 let temp = hour & %00001111

75 serout 0,N2400,(#temp,":")

76

77 let temp = mins & %01110000 / 16

78 serout 0,N2400,(#temp)

79 let temp = mins & %00001111

80 serout 0,N2400,(#temp,":")

81

82 let temp = seconds & %01110000 / 16

83 serout 0,N2400,(#temp)

84 let temp = seconds & %00001111

85 serout 0,N2400,(#temp)

86 return

87

88 printdate:

89 let temp = date & %00110000 / 16

90 serout 0,N2400,(#temp)

91 let temp = date & %00001111

92 serout 0,N2400,(#temp,"/")

93

94 let temp = month & %00010000 / 16

95 serout 0,N2400,(#temp)

96 let temp = month & %00001111

97 serout 0,N2400,(#temp,"/")

98

99 let temp = year & %11110000 / 16

100 serout 0,N2400,("20",#temp)

101 let temp = year & %00001111

102 serout 0,N2400,(#temp," ")

103 return

104

105 printalarmtime:

106 let temp = alarmhour & %00110000 / 16

107 serout 0,N2400,(#temp)

108 let temp = alarmhour & %00001111

109 serout 0,N2400,(#temp,":")

110

111 let temp = alarmmin & %01110000 / 16

112 serout 0,N2400,(#temp)

113 let temp = alarmmin & %00001111

114 serout 0,N2400,(#temp," ")

115 return

116

117 setup:

118 serout 0,N2400,(254,1)

119

David Piggott - Heavy Sleeper’s Alarm Clock

88

Development - Final Breadboard Program

120 sethour:

121 if hour > $23 then resethour

122

123 serout 0,N2400,(254,128,"Hour:",254,192)

124

125 gosub printtime

126

127 pause 100

128 if UP = 1 then inchour

129 if DOWN = 1 then dechour

130 if SET = 1 then setmins

131 goto sethour

132

133 inchour:

134 let temp = hour & %00001111

135 if temp = 9 then inchourtens

136 let hour = hour + $01

137 goto sethour

138 inchourtens:

139 let temp = hour & %00110000

140 let hour = temp + $10

141 goto sethour

142 dechour:

143 if hour = $00 then fullhour

144 let temp = hour & %00001111

145 if temp = 0 then dechourtens

146 let hour = hour - $01

147 goto sethour

148 dechourtens:

149 let temp = hour & %00110000

150 let hour = temp - $10

151 let hour = hour + $09

152 goto sethour

153 resethour:

154 let hour = $00

155 goto sethour

156 fullhour:

157 let hour = $23

158 goto sethour

159

160 setmins:

161 if mins > $59 then resetmins

162

163 serout 0,N2400,(254,128,"Minutes:",254,192)

164

165 gosub printtime

166

167 pause 100

168 if UP = 1 then incmins

169 if DOWN = 1 then decmins

170 if SET = 1 then setseconds

171 goto setmins

172

173 incmins:

174 let temp = mins & %00001111

175 if temp = 9 then incminstens

176 let mins = mins+ $01

177 goto setmins

178 incminstens:

179 let temp = mins & %01110000

180 let mins = temp + $10

181 goto setmins

David Piggott - Heavy Sleeper’s Alarm Clock

89

Development - Final Breadboard Program

182 decmins:

183 if mins = $00 then fullmins

184 let temp = mins & %00001111

185 if temp = 0 then decminstens

186 let mins = mins - $01

187 goto setmins

188 decminstens:

189 let temp = mins & %01110000

190 let mins = temp - $10

191 let mins = mins + $09

192 goto setmins

193 resetmins:

194 let mins = $00

195 goto setmins

196 fullmins:

197 let mins = $59

198 goto setmins

199

200 setseconds:

201 if seconds > $59 then resetseconds

202

203 serout 0,N2400,(254,128,"Seconds:",254,192)

204

205 gosub printtime

206

207 pause 100

208 if UP = 1 then incseconds

209 if DOWN = 1 then decseconds

210 if SET = 1 then setdayclear

211 goto setseconds

212

213 incseconds:

214 let temp = seconds & %00001111

215 if temp = 9 then incsecondstens

216 let seconds = seconds+ $01

217 goto setseconds

218 incsecondstens:

219 let temp = seconds & %01110000

220 let seconds = temp + $10

221 goto setseconds

222 decseconds:

223 if seconds = $00 then fullseconds

224 let temp = seconds & %00001111

225 if temp = 0 then decsecondstens

226 let seconds = seconds - $01

227 goto setseconds

228 decsecondstens:

229 let temp = seconds & %01110000

230 let seconds = temp - $10

231 let seconds = seconds + $09

232 goto setseconds

233 resetseconds:

234 let seconds = $00

235 goto setseconds

236 fullseconds:

237 let seconds = $59

238 goto setseconds

239

240 setdayclear:

241 serout 0,N2400,(254,1)

242

243 setdaydisp:

David Piggott - Heavy Sleeper’s Alarm Clock

90

Development - Final Breadboard Program

244 serout 0,N2400,(254,128,"Day:")

245 if day = $01 then sunday

246 if day = $02 then monday

247 if day = $03 then tuesday

248 if day = $04 then wednesday

249 if day = $05 then thursday

250 if day = $06 then friday

251 if day = $07 then saturday

252

253 sunday:

254 serout 0,N2400,(254,192,"Sunday ")

255 goto setdaypoll

256 monday:

257 serout 0,N2400,(254,192,"Monday ")

258 goto setdaypoll

259 tuesday:

260 serout 0,N2400,(254,192,"Tuesday ")

261 goto setdaypoll

262 wednesday:

263 serout 0,N2400,(254,192,"Wednesday")

264 goto setdaypoll

265 thursday:

266 serout 0,N2400,(254,192,"Thursday ")

267 goto setdaypoll

268 friday:

269 serout 0,N2400,(254,192,"Friday ")

270 goto setdaypoll

271 saturday:

272 serout 0,N2400,(254,192,"Saturday ")

273 goto setdaypoll

274

275 setdaypoll:

276 pause 100

277 if day > 7 then resetday

278 if day < 1 then fullday

279 if UP = 1 then incday

280 if DOWN = 1 then decday

281 if SET = 1 then setdate

282 goto setdaydisp

283

284 incday:

285 let day = day + 1

286 goto setdaydisp

287 decday:

288 let day = day - 1

289 goto setdaydisp

290 resetday:

291 let day = 1

292 goto setdaydisp

293 fullday:

294 let day = 7

295 goto setdaydisp

296

297 setdate:

298 if date > $31 then resetdate

299

300 serout 0,N2400,(254,128,"Date: ",254,192)

301

302 gosub printdate

303

304 pause 100

305 if UP = 1 then incdate

David Piggott - Heavy Sleeper’s Alarm Clock

91

Development - Final Breadboard Program

306 if DOWN = 1 then decdate

307 if SET = 1 then setmonth

308 goto setdate

309

310 incdate:

311 let temp = date & %00001111

312 if temp = 9 then incdatetens

313 let date = date + $01

314 goto setdate

315 incdatetens:

316 let temp = date & %00110000

317 let date = temp + $10

318 goto setdate

319 decdate:

320 if date = $01 then fulldate

321 let temp = date & %00001111

322 if temp = 0 then decdatetens

323 let date = date - $01

324 goto setdate

325 decdatetens:

326 let temp = date & %00110000

327 let date = temp - $10

328 let date = date + $09

329 goto setdate

330 resetdate:

331 let date = $01

332 goto setdate

333 fulldate:

334 let date = $31

335 goto setdate

336

337 setmonth:

338 if month > $12 then resetmonth

339

340 serout 0,N2400,(254,128,"Month: ",254,192)

341

342 gosub printdate

343

344 pause 100

345 if UP = 1 then incmonth

346 if DOWN = 1 then decmonth

347 if SET = 1 then setyear

348 goto setmonth

349

350 incmonth:

351 let temp = month & %00001111

352 if temp = 9 then incmonthtens

353 let month = month + $01

354 goto setmonth

355 incmonthtens:

356 let temp = month & %00010000

357 let month = temp + $10

358 goto setmonth

359 decmonth:

360 if month = $01 then fullmonth

361 let temp = month & %00001111

362 if temp = 0 then decmonthtens

363 let month = month - $01

364 goto setmonth

365 decmonthtens:

366 let temp = month & %00010000

367 let month = temp - $10

David Piggott - Heavy Sleeper’s Alarm Clock

92

Development - Final Breadboard Program

368 let month = month + $09

369 goto setmonth

370 resetmonth:

371 let month = $01

372 goto setmonth

373 fullmonth:

374 let month = $12

375 goto setmonth

376

377 setyear:

378 if year > $99 then resetyear

379

380 serout 0,N2400,(254,128,"Year: ",254,192)

381

382 gosub printdate

383

384 pause 100

385 if UP = 1 then incyear

386 if DOWN = 1 then decyear

387 if SET = 1 then setalarmhour

388 goto setyear

389

390 incyear:

391 let temp = year & %00001111

392 if temp = 9 then incyeartens

393 let year = year + $01

394 goto setyear

395 incyeartens:

396 let temp = year & %11110000

397 let year = temp + $10

398 goto setyear

399 decyear:

400 if year = $00 then fullyear

401 let temp = year & %00001111

402 if temp = 0 then decyeartens

403 let year = year - $01

404 goto setyear

405 decyeartens:

406 let temp = year & %11110000

407 let year = temp - $10

408 let year = year + $09

409 goto setyear

410 resetyear:

411 let year = $00

412 goto setyear

413 fullyear:

414 let year = $99

415 goto setyear

416

417 setalarmhour:

418 if alarmhour > $23 then resetalarmhour

419

420 serout 0,N2400,(254,128,"Alarm Hour:

",254,192)

421

422 gosub printalarmtime

423

424 pause 100

425 if UP = 1 then incalarmhour

426 if DOWN = 1 then decalarmhour

427 if SET = 1 then setalarmmin

428 goto setalarmhour

David Piggott - Heavy Sleeper’s Alarm Clock

93

Development - Final Breadboard Program

429

430 incalarmhour:

431 let temp = alarmhour & %00001111

432 if temp = 9 then incalarmhourtens

433 let alarmhour = alarmhour + $01

434 goto setalarmhour

435 incalarmhourtens:

436 let temp = alarmhour & %00110000

437 let alarmhour = temp + $10

438 goto setalarmhour

439 decalarmhour:

440 if alarmhour = $00 then fullalarmhour

441 let temp = alarmhour & %00001111

442 if temp = 0 then decalarmhourtens

443 let alarmhour = alarmhour - $01

444 goto setalarmhour

445 decalarmhourtens:

446 let temp = alarmhour & %00110000

447 let alarmhour = temp - $10

448 let alarmhour = alarmhour + $09

449 goto setalarmhour

450 resetalarmhour:

451 let alarmhour = $00

452 goto setalarmhour

453 fullalarmhour:

454 let alarmhour = $23

455 goto setalarmhour

456

457 setalarmmin:

458 if alarmmin > $59 then resetalarmmin

459

460 serout 0,N2400,(254,128,"Alarm Minutes:

",254,192)

461

462 gosub printalarmtime

463

464 pause 100

465 if UP = 1 then incalarmmin

466 if DOWN = 1 then decalarmmin

467 if SET = 1 then setfullweekalarmdisp

468 goto setalarmmin

469

470 incalarmmin:

471 let temp = alarmmin & %00001111

472 if temp = 9 then incalarmmintens

473 let alarmmin = alarmmin+ $01

474 goto setalarmmin

475 incalarmmintens:

476 let temp = alarmmin & %01110000

477 let alarmmin = temp + $10

478 goto setalarmmin

479 decalarmmin:

480 if alarmmin = $00 then fullalarmmin

481 let temp = alarmmin & %00001111

482 if temp = 0 then decalarmmintens

483 let alarmmin = alarmmin - $01

484 goto setalarmmin

485 decalarmmintens:

486 let temp = alarmmin & %01110000

487 let alarmmin = temp - $10

488 let alarmmin = alarmmin + $09

489 goto setalarmmin

David Piggott - Heavy Sleeper’s Alarm Clock

94

Development - Final Breadboard Program

490 resetalarmmin:

491 let alarmmin = $00

492 goto setalarmmin

493 fullalarmmin:

494 let alarmmin = $59

495 goto setalarmmin

496

497 setfullweekalarmdisp:

498 serout 0,N2400,(254,128,"Weekend Wakeup:")

499 if fullweekalarm = 0 then disfullweekalarm

500 if fullweekalarm = 1 then enfullweekalarm

501

502 disfullweekalarm:

503 serout 0,N2400,(254,192,"Disabled")

504 goto setfullweekalarmpoll

505 enfullweekalarm:

506 serout 0,N2400,(254,192,"Enabled ")

507 goto setfullweekalarmpoll

508

509 setfullweekalarmpoll:

510 pause 100

511 if fullweekalarm > 1 then resetfullweekalarm

512 if UP = 1 then incfullweekalarm

513 if DOWN = 1 then decfullweekalarm

514 if SET = 1 then setfademins

515 goto setfullweekalarmdisp

516

517 incfullweekalarm:

518 let fullweekalarm = fullweekalarm + 1

519 goto setfullweekalarmdisp

520 decfullweekalarm:

521 if fullweekalarm = 0 then fullfullweekalarm

522 let fullweekalarm = fullweekalarm - 1

523 goto setfullweekalarmdisp

524 resetfullweekalarm:

525 let fullweekalarm = 0

526 goto setfullweekalarmdisp

527 fullfullweekalarm:

528 let fullweekalarm = 1

529 goto setfullweekalarmdisp

530

531 setfademins:

532 if fademins > 60 then resetfademins

533 serout 0,N2400,(254,128,"Fade-in time:

",254,192,#fademins," minute(s) ")

534 pause 100

535 if UP = 1 then incfademins

536 if DOWN = 1 then decfademins

537 if SET = 1 then setdismissmins

538 goto setfademins

539

540 incfademins:

541 let fademins = fademins + 1

542 goto setfademins

543 decfademins:

544 if fademins = 0 then fullfademins

545 let fademins = fademins - 1

546 goto setfademins

547 resetfademins:

548 let fademins = 0

549 goto setfademins

550 fullfademins:

David Piggott - Heavy Sleeper’s Alarm Clock

95

Development - Final Breadboard Program

551 let fademins = 60

552 goto setfademins

553

554 setdismissmins:

555 if dismissmins > 60 then resetdismissmins

556 serout 0,N2400,(254,128,"Dismiss time:

",254,192,#dismissmins," minute(s) ")

557 pause 100

558 if UP = 1 then incdismissmins

559 if DOWN = 1 then decdismissmins

560 if SET = 1 then save

561 goto setdismissmins

562

563 incdismissmins:

564 let dismissmins = dismissmins + 1

565 goto setdismissmins

566 decdismissmins:

567 if dismissmins = 0 then fulldismissmins

568 let dismissmins = dismissmins - 1

569 goto setdismissmins

570 resetdismissmins:

571 let dismissmins = 0

572 goto setdismissmins

573 fulldismissmins:

574 let dismissmins = 60

575 goto setdismissmins

576

577 save:

578 serout 0,N2400,(254,1,"Saving...")

579 writei2c 0,

(seconds,mins,hour,day,date,month,year,control,alarmmin,a

larmhour,fullweekalarm,fademins,dismissmins)

580 pause 1000

581 serout 0,N2400,(254,1)

582 goto poll

583

584 wakeup:

585 serout 0,N2400,(254,128,"Wake-up!")

586

587 let b0 = 0

588 let w1 = fademins * 300

589 for b0 = 0 to 200

590 pwmout 3,49,b0

591 pause w1

592 next b0

593

594 let w1 = dismissmins * 1000

595 pause w1

596 pwmout 3,0,0

597

598 serout 0,N2400,(254,1)

599 goto poll

600

601 lamp:

602 readadc10 2,w0

603 pwmout 3,249,w0

604 return

David Piggott - Heavy Sleeper’s Alarm Clock

96

Research - Electronics - Input (Control) Components

Square Illuminated PCB Switches

Price: £3.20.

Found at Rapid Online > Electronic Components > Switches >

Tactile Switches > Square Illuminated PCB Switches

Illuminated PCB switches with square caps and a soft mo-

mentary action. Applications include broadcasting, medical

and office automation.

• Contact rating - 12V DC 20mA

• SPDT momentary action

• Rubber contacts

• Red, green or yellow LED

• Minimum 100,000 operations

• 7.62mm x 7.62mm base

Requirements
I didn’t do any research into control input components before the de-

velopment stage because I knew that I could only be sure of my re-

quirements after having come up with system ideas and developed

the program.

I now know that I will require a minimum of two momentary action

digital inputs for the setup menu - one to increase the selected value,

and one to change the value selection.

However, for ease of use I think four momentary action digital inputs

is a better choice. Two will be used for incrementing and decrement-

ing the selected value, one to move the value selection along, and one

to move the value selection back (this will require alteration of the

program).

• These square illuminated switches fulfil the requirement of the

specification in that they are illuminated, which will make them

easy to reach in the dark.

• However they are PCB mounting, which means I would have to

put them on PCBs and then attach the PCB to the case front

panel.

If I use these switches I would choose the yellow version; red is too

harsh a colour and green is already used for the LCD.

Contact resistance 1kO maximum

Operating force 0.9±0.3N

Voltage proof AC 150V 1 minute

Soldering 270±5°C 3 sec

Insulation resistance 100MO minimum

DC Operating temp. range –20°C to +70°C

Bounce 10msec maximum

Storage temp. range –40°C to +80°C

Travel 1.0±0.3mm

Operating life 100,000 operations

David Piggott - Heavy Sleeper’s Alarm Clock

97

Research - Electronics - Input (Control) Components

Multi-direction tactile switch large

Price: £1.40

Found at Rapid Online > Electronic Components > Switches >

Microswitches > Multi-direction tactile switch large

Order code 78-0862

A value for money multi-direction

tactile switch that is suitable

for use in PDAs, digital cam-

eras, etc.

• Up, down, right, left or push

actuation

• Lightweight

• Positive click provides good

tactile feedback

• Normally open contacts

• Minimum 1,500,000 operations for extended life

Advantages
Using this multi-direction tactile switch would allow my to create a

very intuitive menu system.

I believe that by using this system pretty much anyone would be able

to work out how to use the alarm clock without any instructions!

I would connect it up such that moving the stick to the right enters

setup and advances through the setup pages, while moving the stick

to the left would move back through the pages.

When in a setup page, moving the stick up/down would increment/

decrement the selected value.

Disadvantages
For the purpose of good aesthetics I could not use this switch with the

stick it has without adding some sort of “D-Pad” (directional pad as

found on mobile phones etc.). However I was not able to find one on

the Rapid website.

Additionally no illumination is provided so the best that I could do to

ensure visibility in the dark would be to surround it by four LEDs, each

at the centre of an edge.
Contact rating 24V DC 50mA

Contact resistance (max) 200mO

Insulation resistance (min) 100MO

David Piggott - Heavy Sleeper’s Alarm Clock

98

Research - Electronics - Input (Control) Components

Low profile push switches

Price: £0.66 (for the black push to break - which is what I

would use).

Found at Rapid Online > Electronic Components > Switches >

Push-Button Switches > Low profile push switches

A range of low profile push switches with large 9mm actuator

button.

• Available in momentary action

push to make, push to break or

changeover options

• Smart chrome bezel

• Supplied with button in red or

black

• SCI R13-502 series

Advantages
These switches are panel mounting which would avoid the problem I

would face with the others of having to produce PCBs for them! Even

having produced PCBs for mounting the others, it would be difficult to

mount them such that there is no gap between the switch and the

panel cut-out whereas with these there would be none.

They are also very simple in terms of connection; having only two sol-

der tags to connect to means I wouldn’t even need to consult data-

sheets. Compare with the illuminated switches for example which

have four connections for switching and an additional two the illumi-

nation.

Disadvantages
No illumination; again I would have to improvise and mount an LED by

each on the front panel to make them easy to find.

The black pus to break version’s order code is 78-1570.

Contact rating 3A 125V AC

 1.5A 250V AC

Contact resistance 50mO max.

Insulation resistance >10 x 107O; min.

Body dimensions push to make 20mm x 14.0mm dia,

 push to break 22.3mm x 14.0mm dia.

 SPDT 21mm x 14.0mm dia.

Panel cut-out 12.7mm

David Piggott - Heavy Sleeper’s Alarm Clock

99

Research - Electronics - Input (Control) Components

16mm soft touch knob

Price: £0.12

Found at Rapid Online > Tools, Fasteners & Production Equip-

ment > Fasteners & Fixings > Knobs > 16mm soft touch knob

Soft touch technology available in a range of 16mm diameter

mixer style control knobs. The knobs feature a soft touch

matt black body with a choice of seven coloured pointers

moulded into the body.

• Styled with todays front panels in mind

• Offers superb looks at competitive costings

• Designed to push-fit onto 6mm splined shaft controls

• Rean P670 series

Available with red, green,

blue, white, yellow, blue,

white, grey and orange point-

ers.

Requirements
The lamp dimmer override potentiometer will need a knob for when

it is mounted to the case. The shaft diameter of the potentiometer I

used when breadboarding is 6mm, so one of these is ideal. I chose the

green version, to match the backlight of the replacement LCD board

that I decided I would use. The order code is 32-0455.

David Piggott - Heavy Sleeper’s Alarm Clock

100

Research - Electronics - Output (Wake-up Call) Components

Dichroic low voltage lamps

Price: Varies from £1.20 to £1.59 depending on version.

Found at Rapid Online > Electrical & Power > Elect Prod &

Lighting > Lighting > Dichroic low voltage lamps

A range of 12V spot lights which are safe,

easy to use and have low power con-

sumption, providing excellent light out-

put which runs cool making them ideal

for display work.

• Available in a range of beam angles in open or enclosed

(protects the reflector and filament bulbs from finger

prints) versions

Requirements
For development purposes I had been using a 20w halogen bulb,

without any form of reflector/lens etc.

When I convert the results of my breadboarding and programming

adventures into an assembled program I will need more than just a

bare bulb for the dawn simulation.

Ideally, the light output will be very bright but unfocused so as the

reduce the dazzling effect - this is highly undesirable because it’s likely

to make the user close their eyes.

When I came up with my casing ideas, I had hoped that I would be

able to have a very wide angle of light radiation, and “frost” the lens

somehow to aid lamp diffusion - perhaps by sand blasting it.

Unfortunately the lamp pictured opposite is pretty much the only

lamp I could find that is even half suitable; there are fewer 12V lamps

than there are 230V lamps so for this reason the range I could choose

from was already limited.

I thought the 20W lamp I used during development was slightly on

the dim side and so have decided to use a 50W lamp. Because I want

a high radiation angle, I have chosen the 50W 60° enclosed version,

order code 23-1951, priced £1.59.

Operating voltage 12V Average life 4000 hours

Lamp base GU5.3

Style Wattage Beam Ansi code Order code

Open 35W 20° FRA 23-1900

Open 50W 24° EXZ 23-1905

Open 50W 38° EXN 23-1910

Closed 20W 36° – 23-1912

Closed 35W 40° FMW+C 23-1940

Closed 50W 24° EXZ+Z 23-1945

Closed 50W 38° EXN 23-1950

Closed 50W 60° FNV-P 23-1951

David Piggott - Heavy Sleeper’s Alarm Clock

101

Research - Electronics - Output (Wake-up Call) Components

Miniature piezo transducer

Price: £0.56

Found at Rapid Online > Electrical & Power > PA & Audio /

Video > Sirens/Sounders/Transducers > Miniature piezo

transducer

A miniature flange mounting piezo audio transducer with fly-

ing leads.

• Housed in a compact package

• Requires an external drive

circuit

• Soundtech type SEP-1126

Requirements
Up until now I had not given any thought to the sound output that will

provide the fail-safe wake-up call because it was such a minor issue

compared to the other problems.

The main difficulty I faced when finding an appropriate sound output

device was getting the tone right. This is of course impossible to judge

from a picture on a website.

To ensure the tone is as I think appropriate for an alarm clock, I opted

to use a driverless piezo transducer. The reason for this is that the

lack of a driver ensures I will have full control over the tone of the au-

dible wake-up call, by using the built in command of the PICAXE for

driving piezos.

Now that I had narrowed my choice down to driverless piezos, I had

to choose a specific model. This was simply a case of looking at the

specifications of every one on the range to see which was loudest.

Unfortunately, I couldn’t find one as loud as I would have liked, but

this was a compromise I was willing to make; I believe the tone is

more important than the loudness.

The piezo I chose has an output of 95dB at 10cm, order code 35-0240.

Operating voltage (Vp-p max) 30V

Sound output 95dB at 10cm

Resonant frequency 2.8kHz

Current consumption 8mA

Capacitance (±30%) 18,000pF

Weight 4g

David Piggott - Heavy Sleeper’s Alarm Clock

102

Research - Electronics - Power Supply Components

Heavy duty DC power socket

Price: £0.55

Found at Rapid Online > Ca-

bles & Connectors > Con-

nectors - Mains/Power > DC

Power Connectors > Heavy

duty DC power socket

High quality DC power sock-

ets featuring nickel plated bodies and single hole

fixing.

• Suitable for panel thickness up to 2.5mm

• Panel cut-out 11mm

• Supplied with hexagonal fixing nut

Requirements
The alarm clock will need a power supply of minimum capacity 50W since that is the

power rating of the lamp I have chosen. The rest of the components are almost negli-

gible; however to ensure maximum reliability, I have allowed an extra 15W for the

other components and chosen to use a 65W power supply.

The power supply I have chosen has a 2.5mm jack and thus I chose the 2.5mm version

of the heavy duty DC power socket shown opposite, order code 20-1072.

30-60w Mini desktop switch mode PSU

Price: £17.75

Found in the Rapid Electronics Catalogue (Paper) 2007 > Electrical & power >

Power supplies > page 435

A range of high quality switch mode PSUs that have 3-pin IEC input connectors.

Wide range input voltage 90 to 264v AC at 47 to 63Hx

Short circuit, over voltage and over current protection

Typically 80% efficient

Fully regulated output

Connector 2.1 x 5.5 x 12mm female barrel

Dimensions 120 x 60 xx 36mm

IEC, TUV, UL approved

David Piggott - Heavy Sleeper’s Alarm Clock

103

Shown on the right is the schematic for the

first artwork I created.

The LCD module is connected at CN4, the

switches at CN5 to CN8, the lamp override

dimmer at CN3, and the fan and lamp at

their labelled terminal blocks.

I have also added a PTM tactile switch,

SW1, between the PICAXE reset pin and 0v.

The most significant change however is

how the fan is driven. It is driven by a sepa-

rate MOSFET which in turn is powered by

the lamp MOSFET. This is because the fan

must only come on during the wake-up call

and not when the lamp override dimmer is

used.

Because the 18X only supports pwmout on

one pin (9), and pwmout is needed for the

fan too, I have got around this problem by

running them from the same PWM output.

The fan is only on however when pin 9 is

high too; which will only occur in the pro-

gram during the wake-up call.

Production - Schematic 1.0

Schematic 1.0

David Piggott - Heavy Sleeper’s Alarm Clock

104

Shown on the right is the first artwork I designed,

which is based on the schematic on the previous

page.

I designed this artwork prior to completing all nec-

essary research, in the hope that it would allow me

to produce a working PCB sooner.

Though I never actually manufactured a PCB from

this artwork I have included it for the sake of com-

pleteness.

The first is because I have decided to use the

square illuminated push to make buttons; this art-

work is designed for push to breaks (the difference

is that the switch potential dividers are inverted).

The second is that I forgot to add any tracking or

pads for the piezo transducer (remember I hadn’t

decided to use one when I designed this artwork) - the piezo is also missing on the schematic on the previous page.

I took special care when designing it to ensure that I did not use wire links for any high current paths - that is, the connections between the

source and drains of the MOSFETS. Terminal blocks are used for high current connections to allow the use of thicker wires.

Also worth noting is that I the artwork of a 0.4” capacitor for the positioning of the backup cell holder since PCB Wizard (the software package

used to create all my artworks) doesn’t have a backup cell holder in it’s parts bin. If I had actually made a PCB from this artwork I would have

found that the spacing of the pads wasn’t sufficient.

Production - Artwork 1.0

Artwork 1.0

David Piggott - Heavy Sleeper’s Alarm Clock

105

Having suffered large setbacks on previous projects due to making mistakes when I converted my schematics into artworks, I decided to put

extra effort into ensuring that there were no mistakes with the tracking of my artworks.

In order to do this, I colour coded the tracks based on what they are for. This made it much easier to check for errors, as you can see above.

To colour code them, I copied and pasted the artwork into Microsoft Paint and used the fill tool, manually changing the colour of each area of

track. This was necessary because PCB Wizard doesn’t support colour coding. I then used Microsoft Photodraw to create the key.

Production - Artwork 1.0 (Colour Coded)

Colour Coded Artwork 1.0

David Piggott - Heavy Sleeper’s Alarm Clock

106

As explained on the previous pages there

were a few flaws in artwork 1.0. As such it

was necessary to create a new one. Shown

on the right is the revised schematic for

this new artwork.

The main change is that the potential divid-

ers for the switches have been removed,

and instead the four input pins of the PI-

CAXE are connected to the 6 pin SIL, CN5.

Also connected to this SIL are +5v and 0v so

that a potential divider can be created on

the switchboards, and so that the buttons

have power for illumination.

Because at this stage I hadn’t actually de-

cided what sort of sounder I would use, I

didn’t know the requirements of it would

be on the circuit.

So that this didn’t disrupt my workflow, I

decided to cater for every possibility when

it came to the sounder requirements. This

is why CN9 has +12, +5v, an output pin from

the PICAXE, and 0v. This would allow me to

use devices with and without drivers, and

at different voltages.

Production - Schematic 2.0

Schematic 2.0

David Piggott - Heavy Sleeper’s Alarm Clock

107

Shown top right is artwork 2.0. The layout is slightly dif-

ferent to that of artwork 1.0. Rather than using the

mask for a 0.4” capacitor for the button cell holder, I

marked it on just by its solder pads.

In order to get the spacing correct, I held the cell holder

up against the computer screen with the zoom level set

to 100% - because the screen was an TFT running at na-

tive resolution I could be sure that the scaling matched

real life.

As in the schematic on the previous page, I have

changed the size of the power supply smoothing capaci-

tor. This is because several times during testing, the

whole circuit had “crashed”. The “crashes” were caused

by me bringing the lamp intensity up too quickly with

the override dimmer. By increasing the capacity of the

smoothing capacitor I hoped to remedy this situation. The larger capacitor was not featured in schematic 1.0 and artwork 1.0 because as al-

ready stated, I created them before I had finished development (specifically, before having implemented the lamp dimmer on breadboard).

In addition to ensuring that no wire links were used along the source and drain routes to the MOSFETs, I have increased the track thickness to

ensure minimum resistance along these high current routes. The lamp and fan MOSFETs and terminal blocks have been relocated to the lower

edge of the board so that all connections from front panel components are to the same edge of the PCB. This should simplify the routing of

wires within the case.

At this stage I hadn’t received the illuminated switches I had ordered and so was unable to create the artwork for the switchboards (there was

no datasheet for them).

Production - Artwork 2.0

Artwork 2.0

David Piggott - Heavy Sleeper’s Alarm Clock

108

As with artwork 1.0, and for the same reasons, I have colour coded artwork 2.0, to help me check the tracking for errors. I used the same tech-

nique and software as with artwork 1.0.

Production - Artwork 2.0 (Colour Coded)

Colour Coded Artwork 2.0

David Piggott - Heavy Sleeper’s Alarm Clock

109

Not connected in the picture are the control switchboards

and the piezo sounder. This is because they had only just

been delivered. The fan and lamp aren’t for reasons described

overleaf.

I had however, connected the backlit 16 x 2 LCD display that I

ordered (featured in the research I did at the start of this

documentation). I gave this priority when connecting things

up because I was less sure as to whether the LCD would be

compatible.

I faced two problems when connecting the new LCD module.

The first was that the datasheet did not state what voltage or

series resistor size the backlit needed.

Thus I had to work out what series resistance to use by trial

and error; I started with a 1K resistor but it was too dim. Then

I tried a 270R resistor - still too dim. So was a 100R resistor.

So was a 30R resistor. So was a 22R resistor. In the end, I set-

tled with a 10R resistor.

Because this resistor is connected on the back of the serial

driver board, it was necessary to separate the two boards to change the resistor and put them together again to test the new value. This is

why in the photo, the SIL that connects them is not soldered onto the LCD board.

The second problem was that I had not tracked on the PCB for the power connections of the LCD - the backlight is unpowered in the picture - I

had managed to test it by touching wires directly from the power supply to the backlight power connections on the serial driver board.

Production - PCB 1.0 from Artwork 2.0

PCB 1.0

David Piggott - Heavy Sleeper’s Alarm Clock

110

PCB 1.0 as pictured on the previous page partly worked - some things did and some things didn’t. Those that didn’t are described on this page.

The first thing noticeable in the picture is that the numbers showing on the LCD are out of range. This wasn’t actually a real problem and was

caused by the unreliable connection between the LCD board and serial driver board - remember I hadn’t soldered them together, so that I

could find the correct backlight resistor value - the other reason for not soldering them together was so that I can easily try out different ways

of attaching it to the case.

The first problem is as I already described, that I hadn’t tracked any power connections on the main PCB for the LCD backlight.

The second and most significant problem is the reason the fan and lamp are not connected in the picture. When I connected the lamp and

switched it on using the override dimmer, the MOSFET driving the lamp got quite hot quite quickly. This was presumably because I was now

using a 50W bulb instead of the 20W bulb I had used for breadboarding and the current being drawn was too high.

Summary
To conclude, I needed to do the following:

1. Add connections for the LCD backlight power.

2. Reposition a lot of components to make room for heatsinks to cool the MOSFETs.

3. Work out the pin layout of the illuminated switches and create artworks for the switchboards.

I did not need to research or source the heatsinks because I had a pair of TO-220 heatsinks spare from another project (Micromouse 2005).

Production - Testing PCB 1.0

David Piggott - Heavy Sleeper’s Alarm Clock

111

Schematic 3.0 is pictured opposite. It is

identical to schematic 2.0 in every way ex-

cept that CN4 (LCD connector) has been

expanded from 3-way to 5-way, so that the

LCD backlight power can be connected.

The other change is that the LCD and sound

lines from the PICAXE have been swapped.

That is, the LCD serial line is now connected

to pin 12 and the sounder line to pin 6,

whereas before they were the other way

around.

This change doesn’t improve the circuit or

schematic in anyway. The change was for

the sake of the artwork - it makes it tidier -

and so I updated the schematic to avoid

confusion.

Production - Schematic 3.0

Schematic 3.0

David Piggott - Heavy Sleeper’s Alarm Clock

112

Artwork 3.0 is pictured opposite. The two changes are

the addition of extra power connections on the LCD SIL,

and the addition of pads and space for the mounting of

heatsinks to the MOSFETs.

As with the button cell holder, PCB Wizard did not have

the component mask or pad spacing information for the

heatsinks I used, so I used my technique of holding

them up the screen with the zoom set to 100% so that I

could get the pad spacing correct, and ensure that the

heatsinks wouldn’t interfere with surrounding compo-

nents (they are quite big!).

There are an extra two smaller artworks below the main

board. These are the switchboards. As already ex-

plained, I am using the illuminated PCB mounting

switches. Because I intend to position the override dim-

mer between the up/down and set/exit buttons, it was

necessary for me to have these buttons split across two

boards, allowing the potentiometer to be mounted be-

tween them.

PCB Wizard did not have the component masks or pad

spacing information for the illuminated switches, so I

had to use my technique of holding them up to the

screen at 100% zoom. I had to disable the snap to grid

feature too for the power connections.

Production - Artwork 3.0

Artwork 3.0

David Piggott - Heavy Sleeper’s Alarm Clock

113

As with the first

artwork, I have col-

our coded artwork

3.0. This was to

help me check for

errors in the track-

ing. I used the

same technique

and the same soft-

ware.

Production - Artwork 3.0 (Colour Coded)

Colour Coded Artwork 3.0

David Piggott - Heavy Sleeper’s Alarm Clock

114

Shown opposite is PCB 2.0 created from artwork 3.0.

Because of the changes to what was connected to what of the

PICAXE, I had to modify the program for this PCB. I also had to

add to the program the code for the functionality of the piezo

sounder. This is explained later in the documentation.

As can be seen in the picture, every component is finally con-

nected!

The buttons, LCD, dimmer potentiometer, and piezo worked

flawlessly.

However, I had some trouble with the lamp and fan; not

through faults of those components, but because of the MOS-

FETS.

Initially it all worked as it should have except for the fan

which didn’t run at all. I tested the MOSFET that should have

been driving the fan (by swapping it with the lamp MOSFET) -

and the lamp didn’t light, indicating that that MOSFET was

faulty. To remedy this, I put the original lamp MOSFET back

and ordered a replacement one for the fan.

However, on soldering this replacement in, it caused even more problems; on connecting power to the board, the PICAXE got very warm to

the touch very quickly. I removed power and thought about what could be causing this. The only change I had made was soldering the re-

placement MOSFET in. I then powered it again and it all worked. This explanation is continued overleaf.

Production - PCB 2.0 from Artwork 3.0

PCB 2.0

David Piggott - Heavy Sleeper’s Alarm Clock

115

As I have already explained, the fan should not run while the alarm clock is being used as a night light. Therefore

it was necessary for me to have separate control of the fan in the program.

However, the fan must have variable intensity for the wake-up call and therefore needs to be run from a pwm

capable output; there is only one of these on the 18X. To get around this problem, I came up with the system

shown on the right. It should be pretty self explanatory; the lamp is driven by MOSFET Q1 which receives a PWM

signal, while the fan is also controlled by MOSFET Q1 but only on when MOSFET Q2 is also switched on by the

PICAXE.

I never breadboarded it because I only had only ordered one MOSFET for breadboarding (I hadn’t come up with

the idea for the lamp override dimmer when I ordered the initial components). Therein lies the problem; this

part of the circuit was untested and as it happens doesn’t work. My evidence for this is that when I disconnected

the fan MOSFET from the lamp MOSFTET which drives it, the circuit functioned as expected (except for the fact

of course that the fan couldn’t run).

The cause of the problem is that when the PWM MOSFET is off, there is infinite resistance between the source of the fan MOSFET and

ground. I suspect that this was subsequently causing a voltage of 12V at the gate pin of the fan MOSFET and thus on the output pin of the PI-

CAXE that drives it. This would explain why the PICAXE overheated as it did.

In order to fix this, I had two options:

1) Completely separate the drive circuitry for the two outputs so that they cannot interfere. In order to do this I would have to use a PI-

CAXE that supports two pwmout pins. The smallest one up from the 18X that does is the 28X and has quite different pin outs. The prob-

lem with this is that I would have to completely redesign the artwork and would lose a lot of the benefits of the evolutionary process

that the circuit & PCB have gone through.

2) Use a switching device in place of the MOSFET that isolates input and output, i.e. a relay. This wouldn’t require any change of PICAXE

because I could continue using a standard high/low output to drive this. Thus I wouldn’t need to completely redesign the artwork, and

would keep the risk of tracking errors to a minimum when combined with my colour coding technique.

Production - Testing PCB 2.0

Lamp & fan MOSFET setup

David Piggott - Heavy Sleeper’s Alarm Clock

116

I chose the second op-

tion that I described on

the previous page due to

the advantages I de-

scribed. Shown on the

right is my implementa-

tion of this new lamp and

fan driver circuit.

Since designing sche-

matic 3.0 and artwork

3.0 I had decided what

sound output to use, and

confirmed that the piezo

I chose worked well

when I connected it to

PCB 2.0 and updated the

program.

It was therefore no

longer necessary that I

provided myself with a

12v or 5v pad for experi-

mentation with different

sound output devices, so

I removed these from

the schematic.

Production - Schematic 4.0

Schematic 4.0

David Piggott - Heavy Sleeper’s Alarm Clock

117

Artwork 4.0 is pictured opposite. There are three

changes from artwork 3.0. The first is that I made the

pads for the heatsink mounting holes larger, to allow

me to solder the heatsink to the board.

Second is the removal of the 5v and 12v pads I provided

for sound output experimentation, for the reason de-

scribed on the previous page. I also added pads as

markers for weaving holes for the piezo wires, which I

had forgotten to do on artwork 3.0.

The last and most significant changes is the complete

replacement of the fan switching mechanism with a re-

lay instead of the original MOSFET, for reasons already

covered. This required a small amount of retracking sur-

rounding the relay area, to make room.

I used the standard relay circuit that I had used during

the course.

Production - Artwork 4.0

Artwork 4.0

David Piggott - Heavy Sleeper’s Alarm Clock

118

Once again I have

colour coded the

artwork, because

by doing so I auto-

matically check the

artwork for track-

ing errors. Again I

used Microsoft

Paint and Microsoft

Photodraw.

Production - Artwork 4.0 (Colour Coded)

Colour Coded Artwork 4.0

David Piggott - Heavy Sleeper’s Alarm Clock

119

Shown on the right is PCB 3.0,

produced from artwork 4.0. I

noticed two mistakes with the

artwork when populating the

board, one of which caused a

problem.

The first one was a surplus pad

placed on the +12v track that

goes to the fan terminal block

as shown on the right.

The second was that I

had misplaced one of

the pads for the 0Ω

resistor linking the 5v

pin of the PICAXE to a

+5v track and instead

placed it on the

analogue in track.

To fix this I drilled a hole at the correct location on the

+5v track and soldered the resistor there. This worked

out very well and is hardly noticable on the board.

As can be seen in the picture, everything works as it

should with this PCB!

Production - PCB 3.0 from Artwork 4.0

PCB 3.0

Extra pad

Misplaced pad

David Piggott - Heavy Sleeper’s Alarm Clock

120

Design Overview
I chose to use the first of the ideas I came up with way back before circuit development.

A small scan of this is shown on the right as a reminder of the general idea.

When I came up with this idea, I was not aware that I would need a heatsink on the

lamp MOSFET and therefore didn’t allow sufficient room for one on the PCB (I had in-

tended for the rear of the base to be no more than approximately 4cm high).

I had originally envisioned an entirely acrylic construction. However there is one flaw in

this idea; in order to attach the main panels to the side panels (shown in black in the

picture), I would need sufficient surface area for the screws. The 3mm/5mm thickness

of acrylic I intended to use certainly wouldn’t be enough.

The final problem I would encounter using this idea unadapted concerns the curves

along the front between the base panel and front panel. These would require quite a lot of time to implement well and because at this stage

in production time was becoming limited, I decided to drop these from the design; since they were not a part of the specification I do not con-

sider this a failing of the case design.

In addition to the above described problems, I decided that the front panel layout of the initial idea was not optimal in terms of user ergo-

nomics; the primary cause for this is the incline of it. I realised that the optimal setup would be one in which the front panel components are

perpendicular to the users line of sight; this ensures maximum LCD contrast thus making it easier to read, and also maximum airflow and light

intensity thus ensuring maximum effectiveness of the wake-up call.

Depending on whether the alarm clock is placed higher or lower than the user, the front panel should be inclined either forward or backward

to ensure it is perpendicular to the users line of sight. Because users will position the alarm clock at different heights the optimal incline will

vary. There are two solutions to this problem; a hinged front console, or a compromise incline. I chose the latter.

Case Development - Design Overview

Chosen case idea

David Piggott - Heavy Sleeper’s Alarm Clock

121

Case Development

For the reasons described on the previous page I have adapted the case design as illustrated by the

model shown below, created using ProDESKTOP. Because at this stage in the project I had already

used the 40 hours I allocated for the project, and because the deadline was rapidly approaching, I

did not make use of ProDESKTOP to the extent that I would otherwise have done (i.e. create every

separate component, dimensioned at every

stage, and then assemble them together

and produce photorealistic renders).

If I had had time to create all the compo-

nents on ProDESTKOP, dimensioning the

case itself would have been much simpler

than it was due to the interference check-

ing function of ProDESKTOP. This function

allows you to check for solids that inter-

sect.

By fully dimensioning all the components and using the interference checking feature I

would have been able to easily ensure that the design would work and everything

would fit in the case.

Because I didn’t have time to create all the components however I had to use an alter-

nate approach; pencil and paper.

Shown bottom right are the final side profile dimensions I came up with after having

created many rough sketches working with the critical dimensions of all the compo-

nents. These sketches are included for viewing in appendix B. I found that the mini-

mum exterior width, allowing for total deviations of no more than 5mm, was 190mm.

Adapted case shape

Side panel dimensions

David Piggott - Heavy Sleeper’s Alarm Clock

122

Case Development - Side Profile

The diagram on the left and the list and key that fol-

lows serve two purposes. They detail the order I assem-

bled the case in, and the name of the part referenced:

1. Base panel (5mm x 150mm x 190mm clear acrylic)

2. PCB cover panel (5mm x 85mm x 190mm clear

acrylic)

3. Top panel (5mm x 50mm x 190mm clear acrylic)

4. Rear panel (3mm x 45mm x 190mm translucent

blue acrylic)

5. Mid panel (3mm x 145mm x 190mm translucent

blue acrylic)

6. Square rubber feet

7. Nylon PCB (main) standoffs

8. PCB (main)

9. DC power socket

10. Rear fan guard

11. Front fan guard

12. Fan

13. Internal fan guard

14. Lamp

15. LCD

16. Dimmer potentiometer & knob

17. Nylon PCB (switchboard) standoffs

18. PCBs (switchboards)

19. Front console panel (3mm x 200mm x 190mm

translucent blue acrylic) Side profile

David Piggott - Heavy Sleeper’s Alarm Clock

123

Aluminium Panel Creation
Having recognised need to make the side panels from something other

than plastic I decided to use aluminium. The panel component of the

ProDESTKOP model I created is shown top right. All tabs are 10mm deep

and there is a 10mm gap between either side of the tabs and the edge of

the face the tab is attached to.

To construct the panel, a former was made from 18mm thickness MDF,

shown top left. I then marked onto 2mm thickness aluminium the net

that I had created, using a set square and ruler throughout as a means of

quality control. For the large cuts, I used the guillotine to cut the alumin-

ium, and then used the hegner saw for the finer details (between the

tabs).

For the smaller tabs, I clamped the tabs in a vice and then bent the panel until it was perpendicular to

the tab. For the larger tabs, I clamped the panel between the former shown top left and some scrap

blocks of wood. Then using a soft mallet I beat the tabs into the correct shape. The formed panel is

shown bottom left.

Considering it was my first attempt I was quite happy with the result. However, I had doubts as to how

much I could improve on it in terms of accuracy. In addition to this, the available aluminium sheet had

no protective plastic covering on it and as a result was very scratched - which I don’t want on the fin-

ished case.

Because time was becoming limited with the deadline approaching, I decided that the best compromise

would be to make the side panels out of MDF.

Case Production

Formed side panel

MDF former

ProDESKTOP model

David Piggott - Heavy Sleeper’s Alarm Clock

124

MDF Panel Creation
Due to the profile I had decided on for the side panels, cutting the MDF was a little more complicated than

cutting out a rectangular shape. It was decided that the best way would be to print out a copy of the side

profile I had drawn on ProDESKTOP and stick this to the MDF, which would then be cut with the bandsaw.

Getting this right took a bit of experimentation due to scaling issues when printing. I printed the profile at

100% zoom level, yet when I measured the lines on paper it was slightly too small. After some experimen-

tation I found that a zoom level of 102% yielded results within 1mm of the sizes of the design. I had a choice

of 9, 12 or 18mm thickness MDF.

• 18mm MDF was too thick because it would interfere with the edges of the fan and switchboards.

• 9mm MDF proved too thin after a construction attempt in which it split when the acrylic panels were

screwed on.

• 12mm MDF was therefore my final choice.

Shown top right is the template I described, that I printed and stuck to the MDF panels for cutting. Once the panels had been cut, I then had

to remove the paper; it had stuck quite well so I had to remove it by sanding the panels until it was removed.

For the surface finish of the MDF panels I decided to use silver vinyl to give a smooth finish. Because of the slight inaccuracy when cutting out

the panels (partly due to the slight deviation of the printed profile and partly due to any inaccuracies when the panel was cut), I decided that

the best method of cutting the vinyl would not be to cut it using the vinyl cutting machine from the digital profile I created, but instead to use

the real MDF panels as templates. In order to do this I simply pressed each of the four large sides of the MDF panels (two for each) against the

MDF and cut around it with a scalpel knife.

Case Production

Panel template

David Piggott - Heavy Sleeper’s Alarm Clock

125

Console and mid panel creation
I used the Roland CAMM2 milling machine with a 3mm milling tool to create the console and mid panels. This was necessary because of the

shapes that needed to be cut;

• The air intake/exhaust holes couldn’t be drilled with the pillar drill because of their large diameter; attempting to do so would have just

resulted in the acrylic cracking.

• The same is true of the lamp reflector hole.

• The control buttons needed square holes which obviously couldn’t be made with the pillar drill.

• The LCD needed a rectangular hole which again couldn’t be made with the pillar drill.

• The dimmer potentiometer hole could have been drilled with the pillar drill but since I was using CAMM2 for the panel anyway it made

sense to use CAMM2 for this too.

I first created the mid panel, which needed one 80mm diameter hole for the air intake and four 5mm holes surround it, for mounting the fan

guard. I used Techsoft 2D design software to draw up the design and plot to the CAMM2 machine with. This was a success.

I then created the front console panel which needed holes for the fan, fan mounting, lamp, LCD, dimmer potentiometer and control buttons.

For this I had a 200mm x 220mm acrylic panel cut and then when I drew up the design on 2D design I included a 190mm x 195mm rectangle

around the design. This was so that the panel edges would be accurately cut (which isn’t so easily achieved when the panels are cut with the

bandsaw).

When creating the console panel I had the choice of making two separate panels (one for the lamp and fan, one for the control IO) or a single

panel and then bending it with the line bender. I chose the latter because if I had created them as separate panels the gap between them

would have been visually unattractive.

See appendix B for the rough sketches from which I worked out the dimensions for the panels.

Case Production

David Piggott - Heavy Sleeper’s Alarm Clock

126

Finishing touches to the electronics
Throughout the circuit & program development I used a fairly cheap and low airflow fan that I

got from Rapid through the school. However, right at the beginning of the project when I did

my component research, I had found a Delta 80mm high power fan that I was going to use in

the project - I hadn’t forgotten this, and prior to assembling the case I purchased three 80mm

fan guards and the high power Delta fan I had wanted.

The fan is a three wire device (one is for RPM reporting) and I did not wish to destroy the wire

termination. I therefore used a three wire male fan connector to connect the fan to the main

PCB.

The fan guards are necessary for two reasons; firstly to make the case more aesthetically

pleasing, but secondly and more importantly for safety. Due to the extreme power of the

Delta fan, there is a risk of serious injury if you were to get your finger in the way of the

blades, hence I have restricted access to the blades with the guards. The reason for the inter-

nal guard is to prevent the internal wiring from somehow getting in the way of the blades and being shredded by the blades. It also acts a sec-

ond barrier in the event that the external rear guard is removed.

A few more things had to be done to the PCBs (main and switchboards) before they were ready to be mounted in the case. Firstly I cut them

down to the borders I had marked on the artworks, using a Dremel and cutting wheel. I then drilled the holes for the PCB standoffs on which

they would be mounted.

The final, and most important thing that had to be done to the PCB was to cut it down to size; the heatsink was originally too large to fit in the

case (I was aware of this when designing the case). However rather than make the PCB containing part of the case taller, I decided that it

would be better for the case aesthetics to instead trim the heatsink down. I did this with a Dremel and cutting wheel; the whole operation

took approx. 60 minutes (including time during which I let the Dremel and heatsink cool down). Shown top right are the finished electronics.

Case Production

Trimmed heatsink and new fan

David Piggott - Heavy Sleeper’s Alarm Clock

127

Once I had created the breadboard program (documented in the breadboarding & programming section), I continually improved it while wait-

ing on other things during production (e.g. waiting for wood/plastics to be cut). Prior to adding any improvements I first of all had to finish it

off; when I wrote the breadboard program, I didn’t include any code for the sound output because I didn’t have one, and I didn’t include any

code to control the fan when the wakeup call runs. Rather than detailing every minor program version I made (as this would take literally hun-

dreds of pages if I included the full program each time), I have instead included only the final program.

Between writing the breadboard program and the final program, I discovered the cause of the problem I had encountered with some types of

IF statement; I had neglected to enable the enhanced compiler in the setup menu. On doing so I found that I was able to use much more pow-

erful syntax.

The changes from the original program that change functionality are detailed below:

• Addition of code for piezo sounder (used at end of setup menu to provide confirmation of save).

• Beeping during second stage of wake-up call (the ‘assertive’ mode).

• Reordering of menus, placing all alarm related screens first, followed by the real time and date setup screens. This is because the most

commonly altered settings will be those relating to the alarm, so placing these first ensures it is convenient to use.

• Addition of code that allows the fan to be switched on and off when the clock is idle (though control is not independent of the lamp

dimmer). The button the code uses is the up button.

• Addition of code that allows the wake-up call to be dismissed during the second stage of the wake-up call (assertive mode). The button

that this code monitors is the down button.

However there are more than just changes to the functionality of the program. The compiled size of the original breadboard program is 1899

bytes (out of 2048 byes available). After I had added the new features detailed above the compiled size was greater than 2048 bytes and thus

I couldn’t download it to the PICAXE. Therefore drastic changes to the program were necessary. I spent a lot of time planning the changes and

have done my best to explain them on the following pages.

At all stages of memory usage optimisation, the question I asked myself when making decisions was ’What will minimise repeated code sec-

tions the most?’

Final Program - Cutting down the bits

David Piggott - Heavy Sleeper’s Alarm Clock

128

There is one part of the program that contained excessive amounts of repeated code - the setup menus. Because the repeated code blocks

were similar but not identical, I couldn’t simply write a subprocedure for them all and be done with it. Instead, more involved programming

was necessary.

Despite the limitations of BASIC, I decided to create a system that would mimic the feature of more powerful programming languages to cre-

ate custom user functions. What I mean by this is that instead of having a standard subprocedure for the repeated code, I created a subproce-

dure that works with variables wherever the parameters of the repeated code must vary.

Putting the abstract into context, what I am referring to is the increment/decrement code that I wrote for the binary coded decimals. This is

used in every single setup screen except for the day, weekend wakeup enable/disable, fade-in time and dismiss time screens. It was therefore

quite obvious that by reducing the repetition of code I would be able to significantly reduce the size of the compiled program.

Combined with the fact I had now enabled the enhanced compiler, I was able to rewrite all the BCD inc/dec blocks into the following block. As

can be seen, it uses three variables; digit, value and maxvalue. The value of the digit variable when the procedure is called doesn’t matter be-

Final Program - Cutting down the bits

if UP = 1 then

 let digit = value & %00001111

 if digit = 9 then

 let digit = value & %01110000

 let value = digit + $10

 else

 let value = value + $01

 endif

elseif DOWN = 1 then

 if value = $00 then

 let value = maxvalue

 else

 let digit = value & %00001111

 if digit = 0 then

 let digit = value & %01110000

 let value = digit - $10

 let value = value + $09

 endif

 let value = value - $01

 endif

endif

if value > maxvalue then

 let value = $00

endif

David Piggott - Heavy Sleeper’s Alarm Clock

129

cause it is only used by the procedure for temporary storage of the digits.

The value variable is set before the procedure is called. In this way I have created a primitive way

of passing parameters to my makeshift function. When the ‘function’ (subprocedure) returns

back to the program block that called, the calling block can then use the value of the appropri-

ately named value variable as necessary.

Despite my pledge to reduce repeated code, this inc/dec function that I created is actually fea-

tured in the final program in three different places; once in each of the print blocks (printtime,

printalarmtime and printdate). The reason for this is that the necessary bitmasks vary; for the

printdate procedure, the bitmask for the tens must be %11110000 to allow the range to reach 99

(as illustrated by the DS1307 register location included again top right).

Because my incdec ‘functions’ required the use of two additional variables, and because I had already used all the available PICAXE byte vari-

ables with the breadboard program, I had to completely rethink my use of the available byte variables.

The new memory allocations should be relatively obvious from the symbol definitions at the beginning of the new program. I have defined

multiple symbols for the same byte variables; this is because I had to reuse them through the program due to the shortage. This meant I had

to be very careful to ensure that at no point in the program does any of the code overwrite variables that are needed before the next poll (in

which the important variables are refreshed from the registers of the DS1307).

Because I now had fewer available bytes than before, while having to maintain the same level of functionality, I had to find some spare mem-

ory somewhere. The solution to this was through the use of the peek and poke commands of the PICAXE, that enable access to the registers

of the PICAXE.

Final Program - Cutting down the bits

Register location table

David Piggott - Heavy Sleeper’s Alarm Clock

130

In order to reduce the maximum number of simultaneous byte variables required I decided to split the setup menu system into two parts; the

alarm setup, and realtime setup.

When the setup menu is loaded, the program reads all settings related to the realtime into the allocated byte variables. These values are im-

mediately stored in the internal registers of the PICAXE at addresses 80 to 86. Then all settings related to the alarm are read into the allocated

byte variables (which overlap with the realtime variables, hence the need to store the realtime variables in the internal registers prior to over-

writing them). The code for this is as follows:

The setup system then proceeds, advancing through the alarm setup screens when the set button is pressed, and moving back when the exit

button is pressed.

Final Program - Cutting down the bits

326 setup:

327 readi2c $00,

(setupseconds,setupmins,setuphour,setupday,setupdate,setu

pmonth,setupyear)

328

329 poke 80,setupseconds

330 poke 81,setupmins

331 poke 82,setuphour

332 poke 83,setupday

333 poke 84,setupdate

334 poke 85,setupmonth

335 poke 86,setupyear

336

337 readi2c $08,

(setupalarmmin,setupalarmhour,setupfullweekalarm,setupfa

demins,setupdismissmins)

338

339 serout 6,N2400,(254,1)

David Piggott - Heavy Sleeper’s Alarm Clock

131

However when the set button is pressed on the dismissmins screen, bytes must be juggled before the screen can advance to those concerning

the real time. The shuntforward block, shown below takes care of this (functioning should be obvious after the initial peek/poke example):

Once on the sethour screen, setup continues as normal if moving forward. However if moving back by pressing the exit button it is again nec-

essary to juggle the bytes around, this time with shuntback block:

When the setup screens are exited by use of the set button, the values must all be saved to the DS1307. The save block takes care of this,

shown overleaf.

Final Program - Cutting down the bits

270 shuntforward:

271 poke 87,setupalarmmin

272 poke 88,setupalarmhour

273 poke 89,setupfullweekalarm

274 poke 90,setupfademins

275 poke 91,setupdismissmins

276

277 peek 80,setupseconds

278 peek 81,setupmins

279 peek 82,setuphour

280 peek 83,setupday

281 peek 84,setupdate

282 peek 85,setupmonth

283 peek 86,setupyear

284

285 goto sethour

287 shuntback:

288 poke 80,setupseconds

289 poke 81,setupmins

290 poke 82,setuphour

291 poke 83,setupday

292 poke 84,setupdate

293 poke 85,setupmonth

294 poke 86,setupyear

295

296 peek 87,setupalarmmin

297 peek 88,setupalarmhour

298 peek 89,setupfullweekalarm

299 peek 90,setupfademins

300 peek 91,setupdismissmins

301

302 goto setdismissmins

David Piggott - Heavy Sleeper’s Alarm Clock

132

Save block:

The next few pages show the final program. At the beginning of the program, in the polling section, there is a section of code I have com-

mented out:

This code is for one of the features I had to drop due to the memory

constraints of the PICAXE; it was an error reporting feature that prints

“Clock error!” to the LCD in the event that PICAXE cannot communicate

with the DS1307.

The other, more significant feature I had to drop, was the option for 12

hour or 24 hour display mode; I got half way to finishing this and then

realised the code would be too big to run on the PICAXE.

Final Program - Cutting down the bits

304 save:

305 serout 6,N2400,(254,1,"Saving...")

306

307 writei2c $00,

(setupseconds,setupmins,setuphour,setupday,setupdate,setu

pmonth,setupyear)

308

309 peek 87,setupalarmmin

310 peek 88,setupalarmhour

311 peek 89,setupfullweekalarm

312 peek 90,setupfademins

313 peek 91,setupdismissmins

314

315 writei2c $08,

(setupalarmmin,setupalarmhour,setupfullweekalarm,setupfa

demins,setupdismissmins)

316

317 sound 0,(32,15)

318 pause 50

319 sound 0,(64,15)

320 pause 50

321 sound 0,(96,15)

322 pause 450

323 serout 6,N2400,(254,1)

324 goto poll

58 'if seconds = 255 then

59 ' serout 6,N2400,(254,1)

60 ' do

61 ' serout 6,N2400,(254,128,"Clock er-

ror!")

62 ' readi2c $00, (seconds)

63 ' loop while seconds = 255

64 ' serout 6,N2400,(254,1)

65 ' goto poll

66 'endif

David Piggott - Heavy Sleeper’s Alarm Clock

133

Final Program

1 init:

2 pause 500

3 serout 6,N2400,(254,1)

4 pause 30

5

6 i2cslave %11010000, i2cslow, i2cbyte

7

8 symbol UP = pin1

9 symbol DOWN = pin0

10 symbol SET = pin7

11 symbol BACK = pin6

12

13 symbol fademins = b0

14 symbol fadeintensity = b0

15 symbol dismissmins = b1

16 symbol dismissbeepcounter = b1

17

18 symbol fadepause = w1

19 symbol dismissloopcounter = w1

20 symbol dismisslooplimit = w2

21

22 symbol seconds = b0

23 symbol mins = b1

24 symbol hour = b2

25 symbol day = b3

26 symbol date = b4

27 symbol month = b5

28 symbol year = b6

29 symbol alarmmin = b7

30 symbol alarmhour = b8

31 symbol fullweekalarm = b9

32 symbol fanenable = b10

33

34 symbol setupseconds = b0

35 symbol setupmins = b1

36 symbol setuphour = b2

37 symbol setupday = b3

38 symbol setupdate = b4

39 symbol setupmonth = b5

40 symbol setupyear = b6

41

42 symbol setupalarmmin = b0

43 symbol setupalarmhour = b1

44 symbol setupfullweekalarm = b2

45 symbol setupfademins = b3

46 symbol setupdismissmins = b4

47

48 symbol digit = b11

49 symbol value = b12

50 symbol maxvalue = b13

51

52 poll:

53 readi2c $08,

(alarmmin,alarmhour,fullweekalarm,fademins,dismissmins)

54 poke 93,fademins

55 poke 94,dismissmins

56 readi2c $00,

(seconds,mins,hour,day,date,month,year)

57

58 ‘if seconds = 255 then

59 ' serout 6,N2400,(254,1)

60 ' do

David Piggott - Heavy Sleeper’s Alarm Clock

134

Final Program

61 ' serout 6,N2400,(254,128,"Clock er-

ror!")

62 ' readi2c $00, (seconds)

63 ' loop while seconds = 255

64 ' serout 6,N2400,(254,1)

65 ' goto poll

66 'endif

67

68 if SET = 1 then setup

69 if UP = 1 then

70 if fanenable = 1 then

71 let fanenable = 0

72 low 7

73 serout 6,N2400,(254,128,"Fan dis-

abled!")

74 pause 2000

75 else

76 let fanenable = 1

77 high 7

78 serout 6,N2400,(254,128,"Fan en-

abled!")

79 pause 2000

80 endif

81 endif

82

83 if day = 7 or day = 1 then

84 if fullweekalarm = 1 then

85 if mins = alarmmin and hour = alarm-

hour then goto wakeup

86 endif

87 else

88 if mins = alarmmin and hour = alarmhour

then goto wakeup

89 endif

90

91 clock:

92 serout 6,N2400,(254,192)

93 gosub printdate

94 serout 6,N2400,(254,128)

95 gosub printtime

96

97 goto poll

98

99 lamp:

100 readadc10 2,w4

101 pwmout 3,249,w4

102 return

103

104 printtime:

105 gosub lamp

106

107 let digit = hour & %00110000 / 16

108 serout 6,N2400,(#digit)

109 let digit = hour & %00001111

110 serout 6,N2400,(#digit,":")

111

112 let digit = mins & %01110000 / 16

113 serout 6,N2400,(#digit)

114 let digit = mins & %00001111

115 serout 6,N2400,(#digit,":")

116

117 let digit = seconds & %01110000 / 16

David Piggott - Heavy Sleeper’s Alarm Clock

135

Final Program

118 serout 6,N2400,(#digit)

119 let digit = seconds & %00001111

120 serout 6,N2400,(#digit," ")

121

122 if UP = 1 then

123 let digit = value & %00001111

124 if digit = 9 then

125 let digit = value & %01110000

126 let value = digit + $10

127 else

128 let value = value + $01

129 endif

130 elseif DOWN = 1 then

131 if value = $00 then

132 let value = maxvalue

133 else

134 let digit = value & %00001111

135 if digit = 0 then

136 let digit = value & %01110000

137 let value = digit - $10

138 let value = value + $09

139 endif

140 let value = value - $01

141 endif

142 endif

143 if value > maxvalue then

144 let value = $00

145 endif

146

147 return

148

149 printdate:

150 gosub lamp

151

152 let digit = date & %00110000 / 16

153 serout 6,N2400,(#digit)

154 let digit = date & %00001111

155 serout 6,N2400,(#digit,"/")

156

157 let digit = month & %00010000 / 16

158 serout 6,N2400,(#digit)

159 let digit = month & %00001111

160 serout 6,N2400,(#digit,"/")

161

162 let digit = year & %11110000 / 16

163 serout 6,N2400,("20",#digit)

164 let digit = year & %00001111

165 serout 6,N2400,(#digit," ")

166

167 if UP = 1 then

168 let digit = value & %00001111

169 if digit = 9 then

170 let digit = value & %11110000

171 let value = digit + $10

172 else

173 let value = value + $01

174 endif

175 elseif DOWN = 1 then

176 if value = $01 then

177 let value = maxvalue

178 else

179 let digit = value & %00001111

David Piggott - Heavy Sleeper’s Alarm Clock

136

Final Program

180 if digit = 0 then

181 let digit = value & %11110000

182 let value = digit - $10

183 let value = value + $09

184 endif

185 let value = value - $01

186 endif

187 endif

188 if value > maxvalue then

189 let value = $01

190 endif

191

192 return

193

194 printalarmtime:

195 gosub lamp

196

197 let digit = setupalarmhour & %00110000 / 16

198 serout 6,N2400,(#digit)

199 let digit = setupalarmhour & %00001111

200 serout 6,N2400,(#digit,":")

201

202 let digit = setupalarmmin & %01110000 / 16

203 serout 6,N2400,(#digit)

204 let digit = setupalarmmin & %00001111

205 serout 6,N2400,(#digit," ")

206

207 if UP = 1 then

208 let digit = value & %00001111

209 if digit = 9 then

210 let digit = value & %01110000

211 let value = digit + $10

212 else

213 let value = value + $01

214 endif

215 elseif DOWN = 1 then

216 if value = $00 then

217 let value = maxvalue

218 else

219 let digit = value & %00001111

220 if digit = 0 then

221 let digit = value & %01110000

222 let value = digit - $10

223 let value = value + $09

224 endif

225 let value = value - $01

226 endif

227 endif

228 if value > maxvalue then

229 let value = $00

230 endif

231

232 return

233

234 wakeup:

235 peek 93,fademins

236 peek 94,dismissmins

237

238 serout 6,N2400,(254,128,"Wake Up!")

239 high 7

240

241 let fadepause = fademins * 300

David Piggott - Heavy Sleeper’s Alarm Clock

137

Final Program

242 let fadeintensity = 0

243 for fadeintensity = 0 to 200

244 pwmout 3,49,fadeintensity

245 pause fadepause

246 next fadeintensity

247

248 let dismisslooplimit = dismissmins * 40

249 let dismissloopcounter = 0

250 for dismissloopcounter = 0 to dismisslooplimit

251 let dismissbeepcounter = 0

252 for dismissbeepcounter = 0 to 3

253 sound 0,(96,15)

254 pause 100

255 if DOWN = 1 then

256 serout 6,N2400,

(254,128,"Dismissed!")

257 low 7

258 pause 2000

259 goto poll

260 endif

261 next dismissbeepcounter

262 pause 500

263 next dismissloopcounter

264 pwmout 3,0,0

265

266 serout 6,N2400,(254,1)

267 low 7

268 goto poll

269

270 shuntforward:

271 poke 87,setupalarmmin

272 poke 88,setupalarmhour

273 poke 89,setupfullweekalarm

274 poke 90,setupfademins

275 poke 91,setupdismissmins

276

277 peek 80,setupseconds

278 peek 81,setupmins

279 peek 82,setuphour

280 peek 83,setupday

281 peek 84,setupdate

282 peek 85,setupmonth

283 peek 86,setupyear

284

285 goto sethour

286

287 shuntback:

288 poke 80,setupseconds

289 poke 81,setupmins

290 poke 82,setuphour

291 poke 83,setupday

292 poke 84,setupdate

293 poke 85,setupmonth

294 poke 86,setupyear

295

296 peek 87,setupalarmmin

297 peek 88,setupalarmhour

298 peek 89,setupfullweekalarm

299 peek 90,setupfademins

300 peek 91,setupdismissmins

301

302 goto setdismissmins

David Piggott - Heavy Sleeper’s Alarm Clock

138

Final Program

303

304 save:

305 serout 6,N2400,(254,1,"Saving...")

306

307 writei2c $00,

(setupseconds,setupmins,setuphour,setupday,setupdate,setu

pmonth,setupyear)

308

309 peek 87,setupalarmmin

310 peek 88,setupalarmhour

311 peek 89,setupfullweekalarm

312 peek 90,setupfademins

313 peek 91,setupdismissmins

314

315 writei2c $08,

(setupalarmmin,setupalarmhour,setupfullweekalarm,setupfad

emins,setupdismissmins)

316

317 sound 0,(32,15)

318 pause 50

319 sound 0,(64,15)

320 pause 50

321 sound 0,(96,15)

322 pause 450

323 serout 6,N2400,(254,1)

324 goto poll

325

326 setup:

327 readi2c $00,

(setupseconds,setupmins,setuphour,setupday,setupdate,setu

pmonth,setupyear)

328

329 poke 80,setupseconds

330 poke 81,setupmins

331 poke 82,setuphour

332 poke 83,setupday

333 poke 84,setupdate

334 poke 85,setupmonth

335 poke 86,setupyear

336

337 readi2c $08,

(setupalarmmin,setupalarmhour,setupfullweekalarm,setupfa

demins,setupdismissmins)

338

339 serout 6,N2400,(254,1)

340

341 setalarmhour:

342 serout 6,N2400,(254,128,"Alarm Hour:

",254,192)

343

344 let value = setupalarmhour

345 let maxvalue = $23

346

347 gosub printalarmtime

348

349 let setupalarmhour = value

350

351 if SET = 1 then setalarmmin

352 if BACK = 1 then poll

353

354 pause 100

355

David Piggott - Heavy Sleeper’s Alarm Clock

139

Final Program

356 goto setalarmhour

357

358 setalarmmin:

359 serout 6,N2400,(254,128,"Alarm Minutes:

",254,192)

360

361 let value = setupalarmmin

362 let maxvalue = $59

363

364 gosub printalarmtime

365

366 let setupalarmmin = value

367

368 if SET = 1 then setfullweekalarm

369 if BACK = 1 then setalarmhour

370

371 pause 100

372

373 goto setalarmmin

374

375 setfullweekalarm:

376 serout 6,N2400,(254,128,"Weekend Wakeup:")

377 if setupfullweekalarm = 0 then

378 serout 6,N2400,(254,192,"Disabled ")

379 else

380 serout 6,N2400,(254,192,"Enabled ")

381 endif

382 if UP = 1 or DOWN = 1 then

383 if setupfullweekalarm = 0 then

384 let setupfullweekalarm = 1

385 else

386 let setupfullweekalarm = 0

387 endif

388 endif

389

390 if SET = 1 then setfademins

391 if BACK = 1 then setalarmmin

392

393 pause 100

394

395 goto setfullweekalarm

396

397 setfademins:

398 if setupfademins > 60 then

399 let setupfademins = 0

400 endif

401 serout 6,N2400,(254,128,"Fade-in time:

",254,192,#setupfademins," minute(s) ")

402

403 if UP = 1 then

404 inc setupfademins

405 elseif DOWN = 1 then

406 if setupfademins = 0 then

407 let setupfademins = 60

408 else

409 dec setupfademins

410 endif

411 endif

412 if SET = 1 then setdismissmins

413 if BACK = 1 then setfullweekalarm

414

415 pause 100

David Piggott - Heavy Sleeper’s Alarm Clock

140

Final Program

416

417 goto setfademins

418

419 setdismissmins:

420 if setupdismissmins > 60 then

421 let setupdismissmins = 0

422 endif

423 serout 6,N2400,(254,128,"Dismiss time:

",254,192,#setupdismissmins," minute(s) ")

424

425 if UP = 1 then

426 inc setupdismissmins

427 elseif DOWN = 1 then

428 if setupdismissmins = 0 then

429 let setupdismissmins = 60

430 else

431 dec setupdismissmins

432 endif

433 endif

434 if SET = 1 then shuntforward

435 if BACK = 1 then setfademins

436

437 pause 100

438

439 goto setdismissmins

440

441 sethour:

442 serout 6,N2400,(254,128,"Hour: ",254,192)

443

444 let value = setuphour

445 let maxvalue = $23

446

447 gosub printtime

448

449 let setuphour = value

450

451 if SET = 1 then setmins

452 if BACK = 1 then shuntback

453

454 pause 100

455

456 goto sethour

457

458 setmins:

459 serout 6,N2400,(254,128,"Minutes:",254,192)

460

461 let value = setupmins

462 let maxvalue = $59

463

464 gosub printtime

465

466 let setupmins = value

467

468 if SET = 1 then setseconds

469 if BACK = 1 then sethour

470

471 pause 100

472

473 goto setmins

474

475 setseconds:

476 serout 6,N2400,(254,128,"Seconds:",254,192)

David Piggott - Heavy Sleeper’s Alarm Clock

141

Final Program

477

478 let value = setupseconds

479 let maxvalue = $59

480

481 gosub printtime

482

483 let setupseconds = value

484

485 if SET = 1 then setdayclear

486 if BACK = 1 then setmins

487

488 pause 100

489

490 goto setseconds

491

492 setdayclear:

493 serout 6,N2400,(254,1)

494

495 setdaydisp:

496 serout 6,N2400,(254,128,"Day:")

497 if day = $01 then sunday

498 if day = $02 then monday

499 if day = $03 then tuesday

500 if day = $04 then wednesday

501 if day = $05 then thursday

502 if day = $06 then friday

503 if day = $07 then saturday

504

505 sunday:

506 serout 6,N2400,(254,192,"Sunday ")

507 goto setdaypoll

508 monday:

509 serout 6,N2400,(254,192,"Monday ")

510 goto setdaypoll

511 tuesday:

512 serout 6,N2400,(254,192,"Tuesday ")

513 goto setdaypoll

514 wednesday:

515 serout 6,N2400,(254,192,"Wednesday")

516 goto setdaypoll

517 thursday:

518 serout 6,N2400,(254,192,"Thursday ")

519 goto setdaypoll

520 friday:

521 serout 6,N2400,(254,192,"Friday ")

522 goto setdaypoll

523 saturday:

524 serout 6,N2400,(254,192,"Saturday ")

525 goto setdaypoll

526

527 setdaypoll:

528 pause 100

529 if setupday > 7 then resetday

530 if setupday < 1 then fullday

531 if UP = 1 then incday

532 if DOWN = 1 then decday

533 if SET = 1 then setdate

534 if BACK = 1 then setseconds

535 goto setdaydisp

536

537 incday:

538 let setupday = setupday + 1

David Piggott - Heavy Sleeper’s Alarm Clock

142

Final Program

539 goto setdaydisp

540 decday:

541 let setupday = setupday - 1

542 goto setdaydisp

543 resetday:

544 let setupday = 1

545 goto setdaydisp

546 fullday:

547 let setupday = 7

548 goto setdaydisp

549

550 setdate:

551 serout 6,N2400,(254,128,"Date: ",254,192)

552

553 let value = setupdate

554 let maxvalue = $31

555

556 gosub printdate

557

558 let setupdate = value

559

560 if SET = 1 then setmonth

561 if BACK = 1 then setdayclear

562

563 pause 100

564

565 goto setdate

566

567 setmonth:

568 serout 6,N2400,(254,128,"Month: ",254,192)

569

570 let value = setupmonth

571 let maxvalue = $12

572

573 gosub printdate

574

575 let setupmonth = value

576

577 if SET = 1 then setyear

578 if BACK = 1 then setdate

579

580 pause 100

581

582 goto setmonth

583

584 setyear:

585 serout 6,N2400,(254,128,"Year: ",254,192)

586

587 let digit = date & %00110000 / 16

588 serout 6,N2400,(#digit)

589 let digit = date & %00001111

590 serout 6,N2400,(#digit,"/")

591

592 let digit = month & %00010000 / 16

593 serout 6,N2400,(#digit)

594 let digit = month & %00001111

595 serout 6,N2400,(#digit,"/")

596

597 let digit = year & %11110000 / 16

598 serout 6,N2400,("20",#digit)

599 let digit = year & %00001111

600 serout 6,N2400,(#digit," ")

David Piggott - Heavy Sleeper’s Alarm Clock

143

Final Program

601

602 if UP = 1 then

603 let digit = setupyear & %00001111

604 if digit = 9 then

605 let digit = setupyear & %11110000

606 let setupyear = digit + $10

607 else

608 let setupyear = setupyear + $01

609 endif

610 elseif DOWN = 1 then

611 if setupyear = $00 then

612 let setupyear = $99

613 else

614 let digit = setupyear & %00001111

615 if digit = 0 then

616 let digit = setupyear & %11110000

617 let setupyear = digit - $10

618 let setupyear = setupyear + $09

619 endif

620 let setupyear = setupyear - $01

621 endif

622 endif

623 if setupyear > $99 then

624 let setupyear = $00

625 endif

626

627 if SET = 1 then save

628 if BACK = 1 then setmonth

629

630 pause 100

631

632 goto setyear

David Piggott - Heavy Sleeper’s Alarm Clock

144

Finished Product - Pictures

Finished product picture 1

Finished product picture 2

David Piggott - Heavy Sleeper’s Alarm Clock

145

Finished Product - Pictures

Finished product picture 3

Finished product picture 4

David Piggott - Heavy Sleeper’s Alarm Clock

146

I have detailed all the problems I encountered and my solutions throughout documentation - the only information not included by it is that

regarding time. The Gaant chart on the following page shows my usage of time.

One thing the Gaant chart doesn’t show is the rate at which I developed programs, because I have shown ‘breadboarding and programming to

specification’ as one item. Infact, once I had recognised that the DS1307s registers contained BCDs I wrote the whole program for the bread-

board version on 10/02/07.

The same is true of the program optimisation and new features I

added on the last day of the project; though I had done a few days

planning before writing the code, this was pretty much an entire re-

write of the program (specifically the setup code - which is the ma-

jority of the program).

As can be seen I was very quick at producing PCBs once I was aware

of problems with previous designs. For example I produced PCB 1 on

the 26/02/07. Once aware of problems I managed to update the art-

work, expose, develop, etch, drill, populate, solder and test PCB 2 all

on the following day - very high workrate!

The table, bottom right, shows a breakdown of the estimated time

spent on the project.

Time Management - Diary

Task Completion time estimate

Paperwork 30 hours

Case ideas 2 hours

Breadboarding 10 hours

Programming to specification 20 hours

Evaluation of electronics and program 2 hours

PCB artwork design 6 hours

PCB production 15 hours

Chosen case idea development 3 hours

Aluminium side panel attempt 2 hours

Case construction and assembly 10 hours

Creation of front and rear panels with CAMM2 2 hours

Preparation of PCB for mounting in case 2 hours

Program rewriting for memory efficiency to en-

able...

10 hours

...Addition of new features to program 2 hours

Mounting of electronics within case 4 hours

Total 120 hours

David Piggott - Heavy Sleeper’s Alarm Clock

147

Time Management - Diary

David Piggott - Heavy Sleeper’s Alarm Clock

148

Testing
As shown on the Gaant chart showing my actual time usage during the project, there is a 44 day long “Evaluation of electronics & program”

starting 10/02/07 and finishing one day before the project deadline.

During this evaluation stage I took the electronics home several times and used the alarm clock on five different mornings instead of my usual

alarm clock. It worked brilliantly everytime, and as it was intended, the slow increase in light intensity prevented me from going back to sleep.

I tested the first two PCBs once each and the final PCB three times, with a range of different fade-in and auto-dismiss times.

Unfortunately I wasn’t able to test the breeze simulation aspect as thoroughly because I only solved all the problems with the fan control on

the final PCB. Even if it weren’t for that, my testing would have been irrelevant because I upgraded the low power fan I had used during devel-

opment with the high power Delta fan.

As I detailed during case development, the issue I had been wary of was the positioning and incline of the front panel components. Having

completed and tested the case, with the electronics in, I am glad to say that the design I settled on works very well and I don’t think it could

be improved upon.

Faults
I only found one fault with the final PCB. It is a intermittent fault that occurs sometimes during the wake-up call or when the alarm clock is

used as a bedside lamp. The problem that occurs is that PICAXE ‘crashes’ and the alarm clock ceases to function until reset.

I have thoroughly analysed the program to check for bugs and have concluded it bug free; if it had been a software problem I would expect it

to occur every time as opposed to being intermittent anyway. The crashes only ever occur at relatively low lamp intensity (i.e. below 1/3 maxi-

mum brightness); beyond this it never crashes. I believe the problem to be either:

• Electrical noise due to the PWM used.

• The power supply not being able to cope with the inrush current to the lamp when it is switched on.

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

149

Improvements
As a result of the extensive testing I did on the electronics, I recognised five areas in which the program could be improved:

1. Right up until I finalised the program, I the setup menu order had the time & date setup first followed by the alarm setup. In testing the

alarm clock I recognised that once the user has initially set the time & date they will rarely need to change it, while they will change the

alarm settings more often. Therefore it made sense from a user convenience point of view to make the alarm setup first followed by the

time & date setup.

2. I added the save confirmation tones when the setup menus are exited and values saved, and a one second wait to prevent the user from

immediately entering setup again.

3. I had originally written the sound part of the wake-up call code block so that the piezo beeped continually with a constant interval; this

didn’t sound much like an alarm clock so I rewrote the sound code so that the piezo beeps four times in quick succession, pauses, beeps

four times in quick succession, pauses, and continues in this way.

4. I added code that would enable the fan to be switched on in addition to the lamp, so the alarm clock not only doubles up as a bedside

lamp but a fan aswell!

5. Despite having decided at the start of the project not to implement a dismiss button of any sort, I decided that during the second part of

the wake-up call, a dismiss button would be overall a good feature. This is a good compromise between forcing the wake-up call on the

user (i.e. they can’t escape the slow increase in fan and lamp intensity to full) and allowing them to dismiss it.

General
Overall I am very pleased with the finished product and am glad I chose to create a ‘Heavy Sleeper’s Alarm Clock’. I have no doubts that my

project is an effective, easy to use, and well featured alarm clock. With a few improvements and modifications I believe it could be turned into

a retailable product.

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

150

Evaluation against specification
Below follows my original specification and my evaluation of each point.

Wake-Up Call - Specification Points
1. A high power 12V lamp will gradually increase in intensity during the wake-up call over an adjustable period of 0 to 60 minutes that I re-

fer to as the fade-in time. Setting the time period to 0 minutes will cause the lamp to go straight to full intensity.

2. An 80mm diameter 12V DC fan will gradually increase in intensity during the wake-up call over the same adjustable period as the lamp.

3. Once at full intensity, the alarm clock will begin the failsafe wake-up call; a loud piezo sounder. This will continue for a user configured

time period that I refer to as the dismiss time.

4. Only one alarm time will be supported to simplify use and development.

Wake-Up Call - Evaluation
1. The lamp used is a 12V lamp and is very bright! The lamp does increase in intensity over the period specified, will switch on immediately

if the period is set to 0, and the period is adjustable from 0 to 60 minutes. However the program does occasionally crash due to either

electrical noise or the power supply being underpowered. The intensity of the lamp is overridden by the program when the wake-up call

runs so it is not a problem if the user has left the lamp on overnight - there will still be a change in light which should wake them.

2. An 80mm fan increases in intensity at the same time as the lamp and is definitely powerful enough to simulate a strong breeze at full

intensity. The fan does not switch on at the same time as the lamp however because there is a threshold voltage below which it won’t

operate. I do not consider this a problem because below this voltage the breeze wouldn’t be noticeable anyway. The intensity of the fan

is overridden by the program when the wake-up call runs so leaving it on overnight shouldn't cause a problem as their will still be a

change in intensity which should wake them.

3. The wake-up call continues for a user configured period of time, adjustable from 0 to 60 minutes, during which a piezo sounder beeps.

The piezo I used was the loudest one I could find without a built in drive circuit and using one with a built in drive circuit wasn’t an op-

tion because I needed to be able to control the tone.

4. Only one time is supported. However, I have added what I consider to be a very useful feature on alarm clocks; the option to disable the

wake-up call from running at weekends and I am very pleased with my implementation of this.

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

151

Technical - Specification Points
1. The alarm clock will have an LCD display to show the current time and for feedback during alarm and time setting.

2. It will use the Serial LCD Module AXE033 to provide the display functionality.

3. It will use the AXE034 clock upgrade to provide the clock functionality.

4. A PICAXE will be used as the core of the system (setting time and alarm time, running the wake up call etc.).

5. An X version of the appropriate size PICAXE will be used because I2C support will be needed to communicate with the clock chip and I

anticipate that my program will be quite long (the X parts have more program memory and the necessary I2C command support).

6. The alarm clock will be powered by a 12V DC external power supply (batteries aren’t sufficient because of the lamp).

7. The correct time will be maintained when external power is disconnected by the backup battery in the AXE034 clock module.

Technical - Evaluation
1. The alarm clock uses an LCD display to show the current time and this has also allowed me to create a very effective and easy to use

setup system. The LCD has good visibility and the backlight ensures it can be read in the dark.

2. I used the Serial LCD Module AXE033 as a serial driver for another LCD; a 16 x 2 backlit module that I upgraded it with.

3. I used the parts of the AXE034 clock upgrade to provide the clock functionality (i.e. the DS1307 and 3v backup cell). However, I didn’t

use them with the AXE033 module for the reasons well described in the development stage (need for I2C and serial communications).

4. I used a PICAXE as the core of the system and it was very useful when developing the program thanks to ease with which new programs

can be downloaded to the PICAXE.

5. I used an X version of the appropriate size PICAXE (18X). Not only did I need I2C support, but I also needed pwmout support, which the

18X provides. My anticipation about the long program was correct and infact I had to cut some of the features I would otherwise have

added to the program in order to fit it on the 18X - even after thorough optimisation of repeated sections of code (features I would have

added include 12hr/24hr option, and an error message on the LCD in the event that the PICAXE cannot communicate with the DS1307).

6. The alarm clock is powered by a 12V DC external power supply which functions correctly most of the time. However I have a suspicion

that the power supply may be the cause of an intermittent crash when the wake-up call runs, so I may have chosen an underpowered

PSU.

7. The correct time is maintained when external power is disconnected by means of a 3v backup cell connected to the DS1307. Not only is

the correct time maintained but I have also made use of the spare RAM available on the DS1307 to store all alarm related settings so

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

152

that when power is restored the users alarm settings are still present (alarm time, weekend wakeup option, fade-in time and dismiss-

time).

Control - Specification Points
1. The alarm clock will have no more than five control inputs, to ensure ease of use.

2. All input and output devices will be located on the front face of the case, so that the outputs are effectively directed at the user, and

they can easily reach the control panel.

3. To ensure usability in the dark, the control inputs will be illuminated.

4. Rather than having a snooze or dismiss button, the clock should automatically dismiss itself after both gentle and fail-safe wake-up calls

have completed. This is to prevent determined users from going back to sleep by dismissing it (unless of course they unplug the power sup-

ply).

5. There will be no on/off switch because the functionality of an on/off switch is simply not necessary with clocks - they are always on.

Control - Evaluation
1. The alarm clock has exactly five control inputs including the dimmer potentiometer. However I would discount the dimmer potentiome-

ter because it’s purpose is so obvious and instead say the alarm clock has only four control inputs. Either way, the setup menu system is

very easy to use and for an alarm clock with so many features and options, possibly the easiest to use realistic setup implementation. I

am very pleased with it.

2. All input and output devices are located on the front of the case, and I am satisfied that the incline of the various components is optimal

in terms of ergonomics.

3. The control buttons are pleasantly illuminated and easy to see in the dark. However there are no illuminated labels, and the dimmer po-

tentiometer is not illuminated. The alarm clock can still easily be used in the dark though because it is easy to remember the function of

the buttons, and that the dimmer potentiometer is located centrally between the down and exit buttons.

4. The clock automatically dismisses itself after both the gentle and fail-safe wake-up calls have completed. However I did go against the

original specification and implement code so that the up button can also be used to dismiss the alarm clock during the second part of

the wake-up call. I believe this to be better than not having a dismiss button at all as this could put some consumers off buying the prod-

uct, and without one people would just unplug it anyway.

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

153

5. There is no on/off switch and this was definitely the correct decision - there is simply no need for one.

Case - Specification Points
1. The case should be as small as is reasonably possible given the output components I will be using, so that it isn’t imposing on the room.

2. All components will be contained within one case—that is, the dawn simulation lamp and breeze fan will be housed within the main

case, to ensure convenience when setting up and positioning the alarm clock.

3. Connection to the power supply will be by a DC power jack located at the rear of the case.

4. The circuit board will be firmly attached inside the case using stand-offs.

5. The alarm clock will also double up as a nightlight, so will require a lamp override control on the panel.

Case - Evaluation
1. The case is as small as reasonably possible given the output components used, and although larger than typical alarm clocks I think it’s

size is more than acceptable considering the features offered by it - not forgetting that it doubles up as a bedside lamp and fan, so space

can be freed up by getting rid of any separate bedside lamp and/or fan!

2. All the components are contained within the case and are positioned very appropriately. However the power supply is external but this

is not a problem at all.

3. The power supply is connected by a DC power jack located on the rear of the case.

4. The circuit board is firmly attached inside the case using stand-offs and positioned such that it is displayed as a design feature of the

case.

5. There is a lamp override dimmer on the front panel. However when the alarm clock is used as a fan, the fan cannot by controlled inde-

pendently of the lamp - that is, to have the fan on, the lamp must also be on. If the user wishes to sleep with the fan on but the lamp off

this would be a problem. If I were to do an improved version of the alarm clock this would be one thing I would change. However rather

than moving to using a PICAXE 28X (for the dual pwmout capable pins) I would continue using an 18X and a single MOSFET giving only

one intensity setting - what I would do differently is that I would have both then fan and lamp controlled by relays, so although they

would share intensity they could be switched on/off independently by the program - user control of this would be by means of the up/

down buttons which would toggle the fan and lamp respectively (and they would both be overridden by the program during the wake-

up call of course).

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

154

General - Specification Points
1. The project should be completed in less than 40 hours.

General - Evaluation
1. While it is impossible to be sure how many hours I spent on the project it is obvious to me that it is more than 40 hours. My estimate is

120 hours and the breakdown of how I worked this out is shown in the diary section.

Evaluation & Testing

David Piggott - Heavy Sleeper’s Alarm Clock

155

If my product were to be produced commercially, I would expect the PCBs to be made in small batches. The entire product would be split into

smaller jobs for production. I would update the design and revert to the original aluminium construction of the side panels, because these

could be produced more effectively when mass produced. The panels (both aluminium and acrylic) would all be cut, drilled and bent in

batches with the aid of templates and drillings jigs to increase speed & accuracy. The use of jigs when drilling acrylic also serves to support the

surrounding acrylic, which is otherwise at risk of cracking due to the pressure of drilling, so through the use of jigs the amount of wasted pan-

els would be reduced.

The cut, drilled and bent panels would then be assembled on a production line with one person allocated to each stage of assembly, and the

electronics then mounted in the cases.

I would update the main PCB to avoid using wire links for bridging tracks, as they are time consuming to place thus reducing profits. Instead I

would use 0ohm resistors, as these are simply inserted with no prior wire stripping and cutting. If my product were to be produced on a larger

scale still, they have the advantage that they can be handled by pick and place robots. Although I used 0ohn resistors where possible on my

prototype, I had to use wire links in places because the gaps were to small for a 0ohm resistor to fit in. There are two possible solutions to this

problem;

• Dual layer PCBs to reduce the need for bridging tracks

• Vertically placed 0ohm resistors

Dual layer PCBs are most advantageous because making the PCB dual layered would also allow the size to be reduced thus allowing the case

to be smaller.

From an environmental and business point of view, it makes sense to use copper islands on the artwork. This is because they reduce the

amount of copper to be etched, thus reducing etching chemical bills and increasing profits as well as reducing harmful wastes in the form of

strong acids and alkalis.

With regard to quality of the final product, I would build quality assurance into the production of the alarm clocks, by continuing with the

techniques I used for the prototype – weaving holes for all flying components and heat-shrink on all bare joints. The use of templates and jigs

as already described would reduce inaccuracies due to human error.

Industrial Practices, Social Issues, Systems & Control

David Piggott - Heavy Sleeper’s Alarm Clock

156

I would also conduct quality control. This would mean that all PCBs would be tested before being mounted in the cases and random samples

of the completed products would be tested both for electrical functionality and defects in the casing (e.g. cracks in the acrylic panels).

If demand for the product were great enough I would expect production to include greater automation to take advantage of the economies of

scale. The main advantages of automation (by the use of robots/CNC machines) are that robots/CNC machines are almost exclusively more

accurate than human workers, thus reducing material wastage due to products that fail testing. The other big advantage is that unlike human

workers they do not require paying, though there are still expenses.

Pick and place robots could be used to populate the boards, and CNC machines would be used for the cutting, drilling and bending of the alu-

minium and acrylic panels. I used CAD and CAM throughout the project – examples of CAD are Livewire used in the creation of schematics,

PICAXE Programming Editor for the programming of the PICAXE, PCB Wizard for the artwork production, ProDESKTOP for the design of the

case, and finally, Techsoft 2D design for the design of the front panel which I then used in the manufacture of the front and mid panels via the

Roland CAMM2 milling machine.

Finally, there is the functionality itself. As I already explained in my evaluation there are a few changes I would make to the design:

1. There is a lamp override dimmer on the front panel. However when the alarm clock is used as a fan, the fan cannot by controlled inde-

pendently of the lamp - that is, to have the fan on, the lamp must also be on. If the user wishes to sleep with the fan on but the lamp off

this would be a problem. If I were to do an improved version of the alarm clock this would be one thing I would change. However rather

than moving to using a PICAXE 28X (for the dual pwmout capable pins) I would continue using an 18X and a single MOSFET giving only

one intensity setting - what I would do differently is that I would have both then fan and lamp controlled by relays, so although they

would share intensity they could be switched on/off independently by the program - user control of this would be by means of the up/

down buttons which would toggle the fan and lamp respectively (and they would both be overridden by the program during the wake-

up call of course).

2. The piezo is not as loud as it needs to be and so I would endeavour to find a louder alternative.

My product is a prototype, and with further development could be produced on a commercial scale.

Industrial Practices, Social Issues, Systems & Control

David Piggott - Heavy Sleeper’s Alarm Clock

157

Bibliography & Conclusion

Resources used
I have included the Wikipedia articles on:

• Bitmasks

• Binary-coded decimal

in appendix A for further reading if it interests you and the level I have explained to in the programming sections is not sufficient for this inter-

est. The locations of these articles are http://en.wikipedia.org/wiki/Bitmask and http://en.wikipedia.org/wiki/Binary-coded_decimal respec-

tively. I also included the “ASCII printable characters” table in appendix A, from the Wikipedia article on ASCII, at http://en.wikipedia.org/wiki/

Ascii (I modified the formatting slightly for printing).

I found a thread on the PICAXE user forums at http://www.rev-ed.co.uk/picaxe/forum/Topic.asp?

topic_id=1080&forum_id=9&Topic_Title=DS1307%2BCorrection&forum_title=No+new+posts+please%21+4 which helped me to recognise that

the values stored in the DS1307 register are in binary coded decimal format and provided an example of how to print them correctly to the

LCD.

I have included numerous datasheets in appendix from both http://www.rev-ed.co.uk and http://www.rapidonline.com/.

Conclusion
On the whole I have really enjoyed the project, in particular the programming stages. It has been a great learning experience - I knew nothing

of nibbles, words or stored binary coded decimals before the project (I had used BCDs in an up/down counter built during the course, but not

in the same way that I have in this project).

Writing the program was a significant challenge, due partly to the difficulty of manipulating BCDs (printing them and performing addition/

subtraction on them) and partly due to the very small amount of memory I had available for the compiled program. The challenge of optimis-

ing the code to minimise memory usage was again something that I really enjoyed. I have a suspicion that I was pushing the limits of the BASIC

language in terms of the features offered; for example, the ability to define functions would have been very useful.

David Piggott - Heavy Sleeper’s Alarm Clock

158

Appendix A (Datasheets, Sample Program Thread)

This appendix contains:

• PICAXE X Parts datasheet

• LCD AXE033 datasheet

• I2C Guide

• ASCII conversion table

• Sample Program Thread

• DS1307 datasheet

• Binary-coded decimals article

• Bitmasks article

• Backlit LCD module datasheet

��������
��������
��������
�������	
�������

��������
��������
�������
��
�
�����������������������
������������������������
�������
������	
������������������������������
������������������������������
������������������������������
������������	����������������	����������
������

�������

 ����
!����"����������������!�
!����"�����������������!��
!����"�����������������!��
!����"���
�������������!�

#��������
#���$����#���������

!����"����
!����"����
!����"����

��
�

 ��������
 ��������

����������������������������
����������������������������������%&��
����������������������������������%&��
������������
����������������
�����������

�����������'�����
�������

��������	�

�

�

	

�

�

�

(

)

�

��

��

�

�	

��

��

��

�(

�)

�

	

)

(

�

�

�

	

�

�

�)

�(

��

��

��

�	

�

��

��

������������
*�+� �,-.��/����

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

PICAXE 18X/28X/40X Extended Features...

��������
��������
��������
�������	
�������

��������
��������
�������
��
�
��
���
������������������������
������	����������������	���������������

 ����
!����"����������������!�
!����"�����������������!��
!����"�����������������!��
!����"���
�������������!�

#��������
#���$����#���������

�
 ��������
 ��������

���������������������������'�����������
����������������������������%&���������
����������������������������%&���������
������
����������������
������������������

����������

�

�

	

�

�

�

(

)

�

��

��

�

�	

�(

��

��

��

�	

�

��

��

�

�)

�(

��

��

��

������������
*�+� �,-.��/����

PICAXE
Type

IC
Size

Memory
(lines)

I/O
Pins

Outputs Inputs ADC
(L =low)

Data
Memory

Polled
Interrupt

PICAXE-08 8 40 5 1-4 1-4 1L 128 - prog -

PICAXE-18 18 40 13 8 5 3L 128 - prog -

PICAXE-18A 18 80 13 8 5 3 256 Yes

PICAXE-18X 18 600 14 9 5 3 256 + i2c Yes

PICAXE-28 28 80 20 8 8 4 64 + 256 -

PICAXE-28A 28 80 20 8 8 4 64 + 256 Yes

PICAXE-28X 28 600 21 9-17 0-12 0-4 128 + i2c Yes

PICAXE-40X 40 600 32 9-17 8-20 3-7 128 + i2c Yes

In this datasheet...
Section 1 - PICAXE Commands

Section 2 - What’s New

Section 3a - PICAXE-28X input/output pins

Section 3b - PICAXE-40X input/output pins

Section 4 - Resonator Frequency and Overclocking

���������������"����
������������������'�����
�����������������������
������������������������
��
��������
��������
��������
�������	����������������

���������������"����
#���$����#���������

#��������
 ����
�

�������
�����������������������

��������
�������
����%&��������

�

�

	

�

�

�

(

)

�(

��

��

��

�	

�

��

��

�

����������

������������
*�+� �,-.��/����

2PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

0��!1.

����������
���������
����

��

�
�

�
�

Serial Download Circuit:
The serial download circuit for all PICAXE microcontrollers is (straight or ‘stereo plug’ cable connections):

 � �

$
$

$
$

$ 0��!1.

����������
���������
����

��

!��,��,��%

SECTION 1 - PICAXE Commands: (new X part commands in bold)
Output - high, low, toggle, pulsout, let pins = Please see the BASIC Commands

Sound - sound help file for more detailed syntax help

Input - if…then, readadc, readac10, pulsin, button and information about each command.

Serial - serin, serout, sertxd
Program Flow - goto, gosub, return, branch

Loops - for…next

Mathematics - let… (+, -, *, **, /, //, max, min, &, |, ^, &/, |/, ^/)

Variables - if...then, random, lookdown, lookup

Data memory - eeprom, write, read

Delays - pause, wait, nap, sleep, end

Miscellaneous - symbol, debug

RAM - peek, poke

Servo Control - servo

Infrared - infrain

Interrupt - setint
Temperature - readtemp, readtemp12
Keyboard - keyin, keyled
1-wire Serial No - readowsn
I2C - readi2c, writei2c, i2cslave
PWM - pwmout
Counting - count

3PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

SECTION 2 - What’s new in the PICAXE-18X, 28X, 40X?
The extended X parts support all the standard commands and features, with the following enhancements:

· Program memory 8x as long (approx. 600 lines rather than 80), with intelligent download

· Continuously driven pwm motor drive outputs (pwmout command)

· Count high frequency pulses within a set time period (count command)

· Large data memory (128 or 256 bytes) (read/write commands)

· i2c bus support for EEPROMs and other devices (i2cslave/writei2c/readi2c commands)

· Interrupt feature on inputs (setint command)

· Accurate digital temperature sensor interface (readtemp/readtemp12 commands)

· 10 bit and 8 bit adc option (readadc10/readadc commands)

· User serial output via the serout pin / programming cable (sertxd command)

· 4800 baud rate option (and faster at higher clock frequencies) (serin/serout commands)

· Read serial number from any Dallas 1-wire device (e.g. iButton) (readowsn command)

· Computer keyboard interface on inputs 6 and 7 (keyin, keyled command)

· Software support for increased clock frequency (see section 3 of this datasheet).

See the BASIC Commands datasheet (v3.5 or greater) for further information on each command.

In addition the PICAXE-28X and 40X have a more flexible i/o pin layout to allow the user to select more inputs and/or

outputs than the standard configuration. See section 2 of this datasheet.

Memory Size
The X parts have a memory size 8x larger than the A parts (2048 bytes rather than 256 bytes). This means it can

store a program of approximately 500-700 lines of BASIC code (depending on commands used).

To reduce download times the X parts only download the appropriate (used) pages of memory. Therefore a shorter

program will download quicker than a longer program

PICAXE-40X
The PICAXE-40X is electronically configured as a ‘special’ version of the PICAXE-28X (with additiona l pins)

Therefore when using the Programming Editor software the ‘PICAXE-28X’ mode is used for programming both the

PICAXE-28X and the PICAXE-40X microcontrollers.

4PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

��������
��������
��������
�������	
�������

��������
��������
�������
��
�
��
���
������������������������
������	����������������	���������������

 ����
!����"����������������!�
!����"�����������������!��
!����"�����������������!��
!����"���
�������������!�

#��������
#���$����#���������

�
 ��������
 ��������

���������������������������'�����������
����������������������������%&���������
����������������������������%&���������
������
����������������
������������������

����������

�

�

	

�

�

�

(

)

�

��

��

�

�	

�(

��

��

��

�	

�

��

��

�

�)

�(

��

��

��

������������
*�+� �,-.��/����

SECTION 3a - PICAXE-28X Input/Output Pins
To provide greater flexibility, the input/output pin configiration of the PICAXE-28X can be varied by the user.

The default power up settings are the same as the other PICAXE-28 parts (8 in, 8 out, 4 analogue).

PORTA (legs 2 to 5) provide 4 analogue inputs

(default) or up to 4 digital inputs.

PORTB (leg 21 to 28) provide 8 fixed outputs.

PORTC (leg 11 to 18) provide 8 digital inputs

(default) or up to 8 outputs.

This gives a maximum of :

12 digital inputs

16 outputs

4 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTC Functions
Leg Default Function Second Function Special Function
11 input 0 output portc 0 infrared (input)

12 input 1 output portc 1 pwm 1 (output)

13 input 2 output portc 2 pwm 2 (output)

14 input 3 output portc 3 i2c scl clock (input)

15 input 4 output portc 4 i2c sda data (input)

16 input 5 output portc 5

17 input 6 output portc 6 keyboard clock (input)

18 input 7 output portc 7 keyboard data (input)

The portC pins can be used as the default inputs, changed to outputs, or used with their special function via

use of the infrain, keyin, i2cslave, or pwmout command as appropriate.

The second or special function of the pins are selected by modified commands as explained in the next section.

5PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

SECTION 3b - PICAXE-40X Input/Output Pins
To provide greater flexibility, the input/output pin configiration of the PICAXE-40X can be varied by the user.

PORTA (legs 2 to 5) provide 4 analogue inputs

(default) or up to 4 digital inputs.

PORTB (leg 32 to 40) provide 8 fixed outputs.

PORTC (leg 15-18. 23-26) provide 8 digital inputs

(default) or up to 8 outputs.

PORTD (leg 19-22, 27-30) provide 8 digital inputs

PORTE (leg 8 to 10) provide 3 analogue inputs

This gives a maximum of :

20 digital inputs

16 outputs

7 analogue inputs

PORTA Functions
Leg Default Function Second Function
2 analogue 0 porta input 0

3 analogue 1 porta input 1

4 analogue 2 porta input 2

5 analogue porta input 3

PORTB Functions
PORTB pins are fixed as outputs and cannot be altered.

PORTC Functions
Leg Default Function Second Function Special Function
15 input portc 0 output portc 0

16 input portc 1 output portc 1 pwm 1 (output)

17 input portc 2 output portc 2 pwm 2 (output)

18 input portc 3 output portc 3 i2c scl clock (input)

23 input portc 4 output portc 4 i2c sda data (input)

24 input portc 5 output portc 5

25 input portc 6 output portc 6

26 input portc 7 output portc 7

The portC pins can be used as the default inputs, changed to outputs, or used with their special

function via use of the i2cslave or pwmout command as appropriate.

PORTD Functions
Leg Default Function Special Function
19 input 0 infrared (input)

20 input 1

21 input 2

22 input 3

27 input 4

28 input 5

29 input 6 keyboard clock (input)

30 input 7 keyboard data (input)

PORTE Functions
PORTE pins are fixed as analogue inputs and cannot be altered.

��������
��������
��������
�������	
�������

��������
��������
�������
��
�
�����������������������
������������������������
�������
������	
������������������������������
������������������������������
������������������������������
������������	����������������	����������
������

�������

 ����
!����"����������������!�
!����"�����������������!��
!����"�����������������!��
!����"���
�������������!�

#��������
#���$����#���������

!����"����
!����"����
!����"����

��
�

 ��������
 ��������

����������������������������
����������������������������������%&��
����������������������������������%&��
������������
����������������
�����������

�����������'�����
�������

��������	�

�

�

	

�

�

�

(

)

�

��

��

�

�	

��

��

��

�(

�)

�

	

)

(

�

�

�

	

�

�

�)

�(

��

��

��

�	

�

��

��

������������
*�+� �,-.��/����

6PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

SECTION 3c - Using porta analogue inputs as digital inputs (28X, 40X)
The porta pins 0 to 3 (legs 2 to 5) are, by default, configured as analogue inputs.

However with the PICAXE-28X and -40X they can also be used as simple digital inputs.

The following syntax is used to test the input condition:

if porta pin0 = 1 then jump

i.e. the additional keyword ‘portA’ is inserted after the ‘if’ command.

to test if two (or more) porta inputs are on

if porta pin0 = 1 AND pin1 = 1 then jump

to test if either of two (or more) porta inputs are on

if porta pin0 = 1 OR pin1 = 1 then jump

Note the portA command is only required once after the ‘if’ command.

It is not possible to test inputs on two different ports within the same if…then statement.

It is not possible to access the portA pins with any other ‘input’ type commands (count, pulsin etc).

 Therefore these pins should be reserved as simple on/off switches.

SECTION 3d - Using portc as inputs (40X)
On the PICAXE-28X portC are the standard input pins and addressed by the standard if pin0 = command.

On the PICAXE-40X portD are the standard inputs, and hence use the standard if pin0 = command. Therefore

for portC inputs the extra keyword portC must be used (as in the if portA pin0 = example above).

SECTION 3e - Using portc as outputs (28X, 40X)
The portc pins are, by default, digital input pins.

However with the PICAXE-28X and -40X they can also be configured to be used as digital outputs.

To convert the pin to output and make it high

high portc 1

To convert the pin to output and make it low

low portc 1

To convert all the pins to outputs

let dirsc = %11111111

To convert all the pins to inputs

let dirsc = %00000000

Note that ‘dirsc’ uses the common BASIC notation 0 for input and 1 for output. (Advanced - If you are

more familiar with assembler code programming you may prefer to use the command ‘let trisc =’ instead,

 as this uses the inverted assembler notation - 1 for input and 0 for output. Do not attempt to directly

poke the trisc register (poke command) as the PICAXE bootstrap refreshes the register setting regularly).

To switch all the outputs on portc high

let pinsc = %11111111

(or) let portc = %11111111

To switch all the outputs on portc low

let pinsc = %00000000

(or) let portc = %00000000

To use portc 1 and portc 2 as pwm controlled outputs use the pwmout command (see the BASIC Commands

help file for further information). The pwm output is maintained continuously in the background, making

these pins ideal for controlling motors etc.

7PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

It is not possible to access the portc pins with any other ‘output’ type commands (sound, serout, pulsout etc).

 Therefore these pins should be reserved as simple on/off outputs (apart from the pwm control on 1 and 2).

When using the special input functions (infrared sensor (0), or an i2c device (3, 4), or a keyboard (6, 7)) you

must take care to ensure that the appropriate pins are maintained as inputs. Converting these pins to outputs

may damage the external device and/or the microcontroller.

SECTION 4 - Resonator Frequency and Overclocking.

All PICAXE functions are based upon a 4MHz resonator frequency. This is the only frequency recommended.

However the user may choose to ‘overclock’ the X parts if desired, although this is not recommended unless

absolutely necessary for a particular project (e.g. when using the count command).

With the -08, -18, -18A the internal resonator is fixed at 4MHz and cannot be altered.

With the -18X the internal resonator has a default value of 4MHz. However it can be increased by the

user to 8MHz via use of the ‘setfreq’ command.

With the -28 and -28A an external 4MHz resonator must be used.

With the -28X / -40X an external 4MHz 3 pin ceramic resonator is normally used, but it is also possible to

use a faster resonator (8 or 16Mhz), although this will affect the operation of some of the commands.

NB PICAXE-28X firmware version 7.0 can be used at 4 or 8 MHz

PICAXE-28X or -40X firmware version 7.1 (or greater) can be used at 4, 8 or 16 MHz

The Programming Editor software supports resonator frequencies of 4, 8 and 16MHz only. No other

frequencies are supported. If any other frequency is used it will not be possible to download a new

program into the PICAXE microcontroller.

To change the frequency:

PICAXE-18X
Download a program containing the command setfreq m4 (for 4 MHz) or setfreq m8 (for 8Mhz). If no setfreq

command is used in a program the frequency will default to 4MHz. Note the new frequency occurs immediately after the

command is run. When downloading new programs, you must ensure the correct frequency (View>Options>Mode) is used to

match the last program running in the PICAXE-18X chip. If in doubt perform a ‘hard-reset’ at 4Hz.

PICAXE-28X and PICAXE-40X
Solder the appropriate external 3pin ceramic resonator into the project board.

Downloading programs at 4, 8, 16MHz
After changing frequency you must select the correct frequency via the View>Options>Mode

software menu. If the wrong frequency is selected the program will not download.

Commands affected by resonator frequency.
Many of the commands are affected by a change in resonator frequency. A summary of the important

commands affected are given below (see BASIC Commands datasheet for detailed command syntax).

8PICAXE-18X, 28X, 40X Information

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 3.2 16/10/03 xparts.P65

count
The base unit of count is The pin is checked every

1ms at 4MHz 20us at 4MHz (max. 25kHz pulse rate)

0.5ms at 8 MHz 10us at 8MHz (max. 50kHz pulse rate)

0.25ms at 16 MHz 5us at 16MHz (max. 100kHz pulse rate)

i2slave
The bus speed within i2slave must be adjusted by use of the appropriate frequency keyword

i2cfast / i2cslow at 4Mz

i2cfast8 / i2cslow8 at 8Mz

i2cfast16 / i2cslow16 at 16Mz If the incorrect keyword is used the i2c function may not work.

pause / wait
The base unit of pause is: The base unit of wait is:

1ms at 4MHz 1s at 4MHz

0.5ms at 8 MHz 0.5s at 8 MHz

0.25ms at 16 MHz 0.25s at 16 MHz

pulsout / pulsin
The base unit of pulsout/pulsin is:

10us at 4Mhz

5us at 8Mhz

2.5us at 16Mhz

pwmout
The period and duty cycle should be calculated using 4MHz, 8MHz or 16Mhz as appropriate.

serin / serout / sertxd
Due to the sensitive nature of serial communication no guarantee is given that serin or serout

commands will work at any frequency other than 4MHz. However the theoretical baud rates at

the higher clock frequencies are as follows:

Baudmode 4MHz 8MHz 16MHz
600 600 1200 2400

1200 1200 2400 4800

2400 2400 4800 9600

4800 4800 9600 19200 (also sertxd baud rate)

A maximum of 4800 is recommended for complicated serial transactions.

sound
The note of sound will be multiplied by 2 (8Mhz) or 4 (16MHz).

The duration of sound (12ms at 4MHz) will be reduced to 6ms (8MHz) or 3ms (16MHz)

Commands that do not work at 8 or 16MHz
The following commands will not work at 8 or 16MHz due to timing issues with the external device listed:

· infrain (infrared remote)

· keyin (keyboard)

· keyled (keyboard)

· readtemp / readtemp12 (DS18B20 temperature sensor)

· readowsn (1-wire device)

· servo (servo)

Commands that are not affected by frequency changes.
The following timing commands are NOT affected as they use a separate internal r/c timer:

· nap and sleep

SERIAL/I2C LCD AND CLOCK (V2)

The serial LCD and clock module allows microcontroller systems (e.g. PICAXE) to

visually output user instructions or readings, without the need for a computer. This

is especially useful when working, for example, with analogue sensors, as the

analogue reading can easily be displayed on the LCD module. All LCD commands

are transmitted serially via a single microcontroller pin using the serout command.

e.g.

to print the text ‘Hello’ the command is simply:

serout 7,N2400,(“Hello”)

The module can also store 7 programmable pre-defined messages to save memory

space usage within the PICAXE system.

The optional low-cost clock upgrade provides a real-time clock and programmable

alarm output. The LCD can show the current date and time on it’s display, and the

alarm output can be programmed to trigger at any period between 10 seconds and 1

year. The clock has a lithium coin cell backup that maintains the time for up to ten

years when the main power supply is removed.

Key Features:
1. 16x2 LCD Alphanumeric Display

2. Simple serial (1 wire) connection to microcontroller (2400,N,8,1).

3. Optional i2c interface to PICAXE-X parts.

4. 7 Programmable pre-defined messages

5. Small footprint (almost same size as the LCD).

6. Optional low-cost clock upgrade, providing

• Real Time Clock

• Programmable Alarm Output

• 1Hz pulse output

• 10 year battery backup

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

2SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Which Mode? (serial or i2c)
Most users will use the module in the default serial mode. The only reason to use it

in i2c mode is if:

1) You are using a PICAXE-X chip and
2) You wish to read the time/data from the DS1307 clock upgrade directly into the

 PICAXE.

In all othe cases the serial mode should be used.

In i2c mode the LCD module acts as a ‘dumb’ i2c slave device. The clock and alarm

functions are not available - all clock and alarm functions must be carried out by

the PICAXE X part itself.

See Section 1 for construction and assembly details.

See Section 2 on pages 6-7 for i2c connection details and samples. Further

information about i2c protocol and interfacing can be found in the ‘i2c Tutorial’

help file. It is assumed that the user has already read this help file.

See Section 3 on pages 8-15 for serial connection details and samples.

Note: Version 1 LCD modules
This datasheet is for version 2 (black colour) modules. Version 1 (green colour)

modules did not have the i2c mode, but this datasheet can still be used as the serial

mode information in section 3 also applies to version 1 modules.

3SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Section 1 - Construction and Kit Contents
• pre-populated PCB

• 16x2 alphanumeric display (brand may vary)

• bag of 12 nuts, 4 bolts and 3 support headers

The LCD is supplied loose so that it can be either fitted directly to the

board, or connected via a longer ribbon cable connection if desired.

The following instructions explain how to fit the LCD directly to the

board (track side) and presume the user is confident at soldering.

Connecting the LCD
1. Snap one header into a 4 and 6 way section. Place the short end

of the 4 way section, with another 10 way header, through the

holes labelled 1-14 on the pcb (from the track side, so that the

short ends show on the component side). Note the extra holes marked

A and K and resistor RB are only used on LCDs with LED backlights (the

LCD in the kit does not have a backlight and so these connections are not

required).

2. Carefully solder each wire pin on the component side of the pcb.

Check each joint carefully for shorts between pins.

3. Place the four bolts through the LCD (from the top downwards). Loosely fit two

nuts to each bolt to act as a spacer.

4. Slide the LCD onto the headers on the track side of the pcb, carefully aligning

the headers and bolts. When aligned, carefully tighten the spacer nuts so that

the LCD is lying parallel to the pcb. Add another nut to each bolt to hold the

LCD in position.

5. Solder the LCD to the pin headers.

6. Snap the 6 pin header into a 2 and 4 way section. Solder the two way section to

the CLK contacts on the board.

7. Solder a wire link in position J2 (power) if a 4.5V battery pack is to be used.

This is not required for a 5V or 6V supply.

8. Connect a power supply to the main connection header (red wire to V+, black

wire to 0V). The LCD should display a time message when the two CLK
contacts are shorted (e.g. with the jumper provided in the kit) and once the
contrast is adjusted (via the variable resistor marked ‘contrast’). If the LCD

does not display a message check the power, contrast and the 14 connector pins

carefully. (Note that if the optional clock upgrade chip is not fitted, the time

will always show as 00/00/00 00:00)

9. Solder a wire link in position J1 (mode) if the LCD is to be used in i2c mode.

No link is required for the default serial mode.

See page 8 for a sample PICAXE serial test program.

Note that the LCD is fitted

above the TRACK side of the

PCB. Ensure no solder bridges

between pins on the header.

4SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Installing the Optional Clock Update

Required:
• CR2032 lithium coin cell

• DS1307 Clock IC

Instructions:
1. Place the DS1307 into the 8 pin socket, ensuring pin 1 is facing the lithium cell

holder.

2. Place the CR2032 lithium coin cell in the holder, ensuring the positive (+) side

is facing up.

Notes:
Note that the lithium coin cell keeps the DS1307 clock operating when the main

power supply is not connected. This ensures accurate time is kept by the module.

The coin cell does not power the LCD or the pulse output. The coin cell will last

approximately 10 years.

Note that the clock and alarms (and pulse output) will not operate correctly until

the initial time is programmed into the module (see the ‘Programming Time into

the Module’ section below).

Users in Europe/USA
Please note that the date convention used in the module is the UK date format dd/

mm/yy. The US date format mm/dd/yy is available by special order.

contrast DS1307lithium coin cell

5SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Input / Output / Power Connections

Main Header (V+,0V)
The main header provides connection for the

power supply (5-6V DC on V+). If you wish to

use 4.5V solder a wire link in position J2

(power). This shorts out the voltage protection

diode D1, as this diode causes a 0.7V voltage

drop, which can make the screen very dim at this

lower 4.5V voltage.

Main header (IN)

These is the serial input (IN).

Main header (SDA and SCL)

These are the i2c mode connections. They must only be used when a wire link has

been soldered in position J1 to put the module into i2c mode (see section 2).

Main header (OUT)
The alarm output triggers (goes high for 5 seconds) whenever a clock alarm occurs

(in serial mode). The alarm output can sink or source 20mA.

Pulse Output (PLS)
The pulse output outputs a square wave of 1Hz (1 pulse per second) when the

optional DS1307 clock IC is fitted. A 330R resistor is included on the board to

allow a low current LED to be soldered directly to this connection to provide a

flashing ‘second’ indicator. The pulse output can sink or source 20mA. The pulse

output will not operate until the clock upgrade is fitted and the correct time is

programmed into the unit.

Clock Jumper (CLK)
When the clock jumper is fitted the module goes into clock mode. During this

mode instructions cannot be sent via the serial connection, as the unit is acting as a

standalone ‘alarm clock’. User defined message 1 is constantly shown on the top

line of the LCD and the time is constantly shown on the bottom line of the LCD

(when the module is powered). The pulse output and alarm output operate as

normal.

LCD Backlight (LCD) (the LCD provided in the kit does not have a backlight)
When a backlight is fitted the LCD connections allows power to be applied to the

backlight. Note that you must also have soldered the ‘A’ and ‘K’ connections on the

LCD and added a resistor to position RB on the pcb to use this feature. See your

LCD datasheet for suitable power and resistor values.

Resonator Tuning (RST)
The resonator tuning pin allows the internal resonator to be calibrated for use with

various PICAXE chips when in serial mode. See appendix a, resonator tuning, for

more details.

���

���

���

��	

��

��

�

��

���

���

��������

��������

��������

������
�����

�����������

�� !"�#�$���

6SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Section 2) Connecting the Module to a PICAXE Microcontroller (i2c mode)
The following diagram shows how to connect the LCD module to the PICAXE X i2c

system.

Note that the 4k7 resistors pull up resistors are pre-soldered onto the AXE033 LCD

module. Therefore additional external resistors are not required.

i2c programming details
The i2c communication protocol used with the LCD module is the same as popular

eeprom's such as the 24C04. The SPE030 family code is $C6, operates at slow speed

(i2cslow) and has a single byte (i2cbyte) address size. Therefeore the PICAXE i2c

setup command (required before readi2c or writei2c is used) is

i2cslave $C6,i2cslow,i2cbyte

PICAXE (i2c) Test program

init: pause 500 ‘ wait for display to initialise

i2cslave $C6,i2cslow,i2cbyte ‘ set up i2cslave for LCD

main: writei2c 0,(254,128,255) ‘ move to start of first line

pause 10 ‘ wait for LCD to process data

writei2c 0,(“Hello!123”,255) ‘ output text

end

The display is write only in i2c mode. Do not use the readi2c command at slave

address $C6, as may cause unreliable behaviour which will require the module to

be reset. Note that a 10ms delay (pause 10) should be placed between consequative

writei2c commands to allow time for the data to be processed.

The LCD can display characters and can also accept certain control commands (e.g.

clear display or move cursor to new position). Note that the LCD module takes

approx half a second to initialise and so any data sent during this period will be

lost. It is advisable to put a ‘pause 500’ command at the start of any program to

ensure no data is lost when the system is powered up.

Characters are normal symbols that can be displayed on the LCD screen. See

Appendix 1 for a table of the common ASCII characters.

All LCD data is written to the write buffer at address 0. This buffer stores the data,

and then prints the data on the LCD screen at the current cursor position when the

special byte ‘255’ is received. The buffer has a maximum size of 20 characters. Each

write must terminate with the number 255, as this tells the module to start writing

the buffered characters to the LCD display itself. Allow 10ms for this processing.

%�

��

�&
'�

((
��
�
�

)"*

��

��

�� !"�+����

������+����

)"*

��

��

���

���

�
�
�&

'

7SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Control Commands (254)
All LCD commands (move cursor etc) are preceeded by the number 254.

The most common control commands are

writei2c 0,(254,1,255) Clear Display (must be followed by ‘pause 30’)

writei2c 0,(254,8,255) Hide Display

writei2c 0,(254,12,255) Restore Display

writei2c 0,(254,14,255) Turn on Cursor

writei2c 0,(254,16,255) Move Cursor Left

writei2c 0,(254,20,255) Move Cursor Right

writei2c 0,(254,128,255) Move to line 1, position 1

writei2c 0,(254,y,255) Move to line 1, position x (where y = 128 + x)

writei2c 0,(254,192,255) Move to line 2, position 1

writei2c 0,(254,y,255) Move to line 2, position x (where y = 192 + x)

Using the Optional Clock Upgrade in i2c mode
When the clock upgrade is used the PICAXE must read the data directly from the

DS1307 chip and then issue LCD write commands to display the data on the screen.

The LCD module has no internal ‘intelligent’ clock routines when in i2c mode, as

only the PICAXE can access the data (the LCD module is a slave, not master,

device). Remember that when reading/sending the data to both LCD and DS1307 it

is necessary to keep re-issuing the appropriate i2cslave command for each part.

Setting the Time / Date
To set the correct time after the circuit is first powered up, the current time must be

written to the DS1307 registers. The following example PICAXE program will setup

the time to 11:59:00 on Thursday 25/12/03.This is carried out by loading the

registers in order from address 00 upwards i.e. seconds then minutes then hours etc.

i2cslave %11010000, i2cslow, i2cbyte

writei2c 0, ($00, $59, $11, $03, $25, $12, $03, $10)

end

Reading the Time / Date
To read the current time you can use the following program to load variables within

the PICAXE with the various register values from the DS1307. This example

program acts as an alarm clock, checking the time every 30 seconds. If the time is

exactly 07:00 then a buzzer, connected to output 7, will sound for 20 seconds.

i2cslave %11010000, i2cslow, i2cbyte ‘ set slave details

loop:

pause 30000 ‘ wait 30 sec

readi2c 0, (b0, b1, b2) ‘ read sec, min, hour

if b2 <> $07 then loop ‘ if hour not 7 loop

if b1 <> $00 then loop ‘ if min not 00 loop

high 7 ‘ switch on buzzer

pause 20000 ‘ wait 20 sec

low 7 ‘ switch off buzzer

pause 60000 ‘ wait 60 sec

goto loop ‘ loop

8SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Section 3 - Connecting the LCD to a PICAXE Microcontroller (serial mode)
The following diagram shows how to connect the Serial LCD module to the PICAXE

system. Output 7 is used to send signals to the LCD, and input 0 is used for the

alarm signal from the clock alarm.

PICAXE Test program

init: pause 500 ‘ wait for display to initialise

main: serout 7,N2400,(254,128) ‘ move to start of first line

serout 7,N2400,(“Hello!123”) ‘ output text

end

Note the use of N2400 (not T2400) within PICAXE programs. Note the Serial LCD

does not buffer bytes received, and so a small delay between bytes (to update the

display) is required on non-PICAXE systems. This delay is applied automatically by

the PICAXE system.

If the characters do not all appear as expected (e.g. as non standard symbols), see

the ‘Resonator Tuning’ section of the datasheet.

Displaying Messages
The LCD can display characters, messages and the time, and can also accept certain

control commands (e.g. clear display or move cursor to new position). Note that

the serial LCD module takes approx half a second to initialise and so any data sent

during this period will be lost. It is advisable to put a ‘pause 500’ command at the

start of any program to ensure no data is lost when the system is powered up.

Characters
Characters are normal symbols that can be displayed on the LCD screen. See

Appendix 1 for a table of the common ASCII characters. Note that 0-7 are special

characters that actually print out the time and predefined messages. The numbers

253 and 254 are used to indicate a write memory or control command sequence

follows.

0 Time

1-7 Predefined Messages

8-128 ASCII Characters (see Appendix 1)

129-252 Miscellaneous Characters (may vary dependant on LCD type)

253 Special Command – Write Memory

254 Special Command – Command Character

255 Reserved for future use

������

��

������*

��

��

��

�

��

PICAXE Serial LCD

Note: The connections must be made

directly to the PICAXE output pins

(not via the darlington driver buffered

outputs found on the PICAXE starter

pack project boards)

9SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Characters can be output via two methods – either by using the ASCII number or

the symbol enclosed in speech marks e.g. (65) and (“A”) both output the same

symbol.

Control Commands (254)
Control commands are all prefixed by the number 254. They are used to send

commands to the Serial LCD Module (e.g. move to line 2, switch cursor off etc.).

The most common control commands are

254,1 Clear Display (must be followed by a ‘pause 30’ command)

254,8 Hide Display

254,12 Restore Display

254,14 Turn on Cursor

254,16 Move Cursor Left

254,20 Move Cursor Right

254,128 Move to line 1, position 1

254, y Move to line 1, position x (where y = 128 + x)

254,192 Move to line 2, position 1

254, y Move to line 2, position x (where y = 192 + x)

Write Commands (253)
Write commands are all prefixed by the number 253. They are used to program the

predefined messages, current time or alarm times into the Serial LCD module.

0 Set clock time

1-7 Set predefined messages 1-7

8 Set Alarm (date/time)

9 Set Alarm (interval)

10 Turn Alarm Off

All write commands must be followed by a 1000ms delay (pause 1000 command)

to allow the internal save to be carried out. When a write command is used a brief

‘DATA SET’ mesaage will appear on the top line of the LCD to indicate the data has

been saved. See the sections below for more details.

10SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Programming a Predefined Message into the Module
The module can contain 7 user predefined messages, each message 16 characters

long. These messages are stored on the LCD module and can be used to greatly

reduce the ‘display text’ that must be stored within the PICAXE or Stamp (hence

reducing the length of the program).

Messages 1,3,5,7 automatically appear on the top line of the display.

Messages 2,4,6 automatically appear on the second line of the display.

The messages must be programmed into the module using a small program running

in a microcontroller such as the PICAXE. The following instructions presume the

connection as shown in the example PICAXE circuit above.

To set message 1 to “Player 1 =” and message 2 to “Player 2 =“ program the PICAXE

with the following program. This loads the message write instruction (253),

followed by the message memory address (1 or 2) followed by the message.

init: pause 500

main: serout 7,N2400,(253,1,”Player 1= ”)

pause 1000

serout 7,N2400,(253,2,”Player 2= ”)

pause 1000

end

Note the messages must always be 16 characters long, so additional spaces must be
added to the text to ensure the message is exactly 16 characters long. Note that a

1000 millisecond programming period must be added after every write instruction.

Displaying a Predefined Message
The predefined displayed messages are displayed in the same way as normal

characters, using the character code 0 (time) or 1 to 7 (messages). Note that a 10ms

delay (pause 10 command) must be added after each command to give the LCD

enough time to display all the 16 characters in the message.

Therefore the following program will display message 1 on the top line of the

display, and the time on the bottom line of the display.

init: pause 500

main: serout 7,N2400, (1)

pause 10

serout 7,N2400, (0)

pause 500

goto main

11SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Combining Predefined Messages and Variables
It is often useful to combine predefined messages with variables e.g. displaying the

score of a game. The following program shows how to show the two scores from

two players, presuming message 1 and message 2 have been pre-programmed with

the phrases “Player 1=” and “Player 2=” (see above).

init: pause 500

main: serout 7,N2400,(1)

pause 10

serout 7,N2400,(254,137,#b1,” “)

serout 7,N2400,(2)

pause 10

serout 7,N2400,(254,201,#b2,” “)

let b1 = b1 + 1

let b2 = b2 + 2

pause 500

goto main

Note that the message code (1 or 2) is first output. A delay of 10ms is then added to

allow the LCD module to display the message. The cursor is the moved 9 positions

along the screen (to the position after the = sign by the 254,137 or 254,210

command) and then the variable value is displayed. Note that the # symbol tells the

microcontroller to output the ASCII equivalent of the variable value, not the direct

value (e.g. “6” “5” not the value 65, which would actually appear as the character

“A”!) Two additional spaces are then also added to ensure variable value changes are

overwritten correctly (e.g. to overwrite ‘234’ by ‘1’ you must output

‘1(space)(space)‘ to ensure the ‘34’ of the first number is overwritten by the spaces.)

12SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Programming the Time into the Module
The current time must be programmed into the module using a small program

running in a microcontroller such as the PICAXE. The following instructions

presume the connection as shown in the example PICAXE circuit above. Note that

once set, the lithium coin cell will maintain the clock time accurately for up to ten

years.

To set the clock to 22:00 on 25/12/01 program the PICAXE with the following

program. This program loads the write instruction (253), followed by the clock

memory address (0), followed by the date and time (“25/12/01 22:00 ”)

init: pause 500

main: serout 7,N2400, (253,0,”25/12/01 22:00 ”)

pause 1000

serout 7,N2400, (0)

end

Note the time and date must be presented exactly as shown, using the 24 hour

clock format dd/mm/yy hh:mm. Note the write messages must always be 16

characters long, so 2 spaces are added to the text to ensure the message is exactly 16

characters long. Note that a 1000 millisecond programming period must be added

after every write instruction. The last serout command shows the time to check it is

correctly programmed.

To accurately enter a time, download the program (set with a time about 1 minute

ahead of schedule) into the PICAXE. Then press the reset switch on the PICAXE (to

re-run the program) at exactly the correct time. This will set the time accurately.

Displaying the Time
The time message is updated with the current date/time every time it is used. The

time message is displayed in the same way as normal preset messages, using the

special character code 0. The time always automatically appears on the second line

of the display.

Therefore the following program will display message 1 on the top line of the

display and the time on the bottom line of the display. The screen will update the

time every 0.5 second.

init: pause 500

main: serout 7,N2400, (1)

pause 10

serout 7,N2400, (0)

pause 490

goto main

13SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Programming the Alarm Time into the Module
The alarm output pin triggers (goes ‘high’ for 5 seconds) whenever the alarm time is

reached. The alarm can be set to a specific date/time (write code 8), or can be set to

repeat at certain time intervals (write code 9). Only one alarm type is active at any

time – the last written alarm type is the one used within the module.

The alarm time or interval must be programmed into the module using a small

program running in a microcontroller such as the PICAXE. The following

instructions presume the connection as shown in the example PICAXE circuit

above.

Setting an alarm at a specific time:
To set the alarm time clock to 07:30 every day (using write code 8), program the

PICAXE with the following program. This program loads the write instruction

(253), followed by the alarm address (8), followed by the time (“00/00/00 07:30”)

init: pause 500

main: serout 7,N2400, (253,8,”00/00/00 07:30 ”)

pause 1000

end

Note the time and date must be presented exactly as shown, using the 24 hour

clock The ‘00’ characters can be used (within the date only) to indicate an ‘ignore’

condition, so in the example above the date is completely ignored, so the alarm will

trigger every day at 07:30. Note the write messages must always be 16 characters

long, so 2 spaces are added to the text to ensure the message is exactly 16 characters

long. Note that a 1000 millisecond programming period must be added after every

write instruction.

To set the alarm to trigger on the first of every month at midnight

init: pause 500

main: serout 7,N2400, (253,8,”01/00/00 00:00 ”)

pause 500

end

14SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Setting an alarm at a specific time interval:
To set the alarm to trigger at an interval, instead of an exact time, use write code 9

instead of 8. For example, to trigger the alarm every ten minutes (using write code

9)

init: pause 500

main: serout 7,N2400, (253,9,”00:10:00 ”)

pause 1000

end

To set the alarm to trigger every 30 seconds

init: pause 500

main: serout 7,N2400, (253,9,”00:00:30 ”)

pause 1000

end

To set the alarm to trigger every two hours

init: pause 500

main: serout 7,N2400, (253,9,”02:00:00 ”)

pause 1000

end

Note the alarm trigger interval is denoted by a number of hours (00 to 23), minutes

(00 to 59) and seconds (00 to 59) between alarms. The smallest practical alarm

interval is 10 seconds, due to the five second ‘on time’ of the alarm output. Note the

write messages must always be 16 characters long, so 8 spaces are added to the text

to ensure the message is exactly 16 characters long. Trigger values longer than one

day should be set using the time and date method shown above.

IMPORTANT NOTE
The interval timer operates as follows on power-up:

Upon power up the module reads the current time – and then adds the alarm

interval to the current time to generate the next alarm time. When an alarm occurs

the interval is once again added to the current time to create the next alarm time.

Therefore the interval timer is effectively reset every time the module is powered

down – the first alarm will be activated the ‘interval time’ after power up. To keep

the interval exactly consistent over a long period the module must be continuously

powered.

Turning the alarm off:
To disable either type of alarm send the ‘10’ command (note that the 10 command

does not require 16 characters to be sent as with all the other commands – it is just

sent by itself)

init: pause 500

main: serout 7,N2400, (253,10)

pause 500

end

15SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

APPENDIX A
Internal Resonator Tuning

The microcontroller used as the controller on the serial LCD operates from an

internal resonator. Many of the PICAXE chips also operate using the internal

resonator.

Use of the internal resonator reduces cost of the product and simplifies PCB design.

In most cases this causes no problems and the LCD will function correctly without

any calibration.

However the internal resonator is not as accurate as external crystal devices, and it

has been found on a very small number of PIC16F628 that the calibration of the

internal resonator can drift slightly. If the PICAXE internal resonator frequency is

also at one of the calibration extremes, you may at first experience some ‘corrupt’

characters being displayed on screen. Typically numeric charcters will work

correctly, but text may appear as non-standard symbols.

If you experience this issue, simply solder a wire link across the ‘RST’ pads. This will

adjust the resonator frequency to allow correct operation.

Earlier Firmware (Version 1 (green) PCB)
Note the RST pin was used as a reset on earlier firmware releases.To discover if you

have the resonator calibration feature, try three tests:

1) If this datasheet is supplied within the LCD pack it is automatically a latest

firmware edition. The resonator tuning feature can be used immediately.

If this datasheet has been downloaded from the internet:

2) Power up the LCD with the clock jumper in place. If the display shows

‘Serial LCD&Clock’ it is the new firmware. If the ‘&’ symbol is displayed as a ‘/’

symbol it is the older firmware.

3) Simply make the wire link. If the LCD does not function then you require a free

firmware upgrade.

If you require a free upgrade of earlier firmware, simply return the PIC chip,

suitably packaged with proof of purchase (e.g. copy of delivery note or invoice) to

your regional distributor who will re-program the firmware chip and return it to you

free of charge.

Europe - Revolution Education Ltd (www.picaxe.co.uk)

16SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

���������	

��������	
 ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ���� ����

����

��

���

���

���� ���

���� ���

���� ���

���� ���

���� �	�

���� �
�

���� ���

���� ���

���� ���

���� ���

���� ���

���� ���

���� �	�

���� �
�

���� ���

APPENDIX B
Standard Character Pattern (Elec & Eltek LCD Module)

17SERIAL/i2c LCD AND CLOCK

revolution © copyright 2003-04 Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk AXE033.pmd v4.1

Standard Character Pattern (Powertip LCD Module)

USING I2C WITH PICAXE

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

Contents:
This article provides an introduction into how to

use i2c parts with the PICAXE system.

This article:

1) Describes the i2c bus

2) Explains how the i2c bus is used with the

PICAXE system

3) Gives an example of using the i2c bus with a

24LCxx series EEPROM

4) Gives an example of using the i2c bus with a

DS1307 real time clock.

5) Gives an example of using the i2c bus with a

SPE030 speech synthesizer.

All the information in this datsheet applies to the

PICAXE-X parts (18X, 28X, 40X). If you wish to

experiment with use of the i2c bus, we recommend

use of the AXE110 Datalogger fitted with the

AXE034 Real Time Clock Upgrade. This will provide

you with a board that has the PICAXE-18X, a

24LC16B EEPROM memory chip, and a DS1307

real-time-clock chip fitted.

Terms used in this article:
IC - integrated circuit or ‘chip’

Master - a microcontroller IC that ‘controls’ the operation of a circuit

Slave - a slave IC that does certain specialised tasks for the master IC

Byte - a number between 0 and 255

Register - a memory location within the slave that stores 1 byte of data

Register Address - an address that ‘points’ to a particular memory register

Block - group of 256 registers

EEPROM IC - a slave IC that can store a large amount of data

RTC IC - a slave IC that can maintain the date / time (real-time-clock)

ADC IC - a slave IC that can perform analogue-to-digital conversions

Sample i2c circuit
PICAXE-18X datalogger circuit.

Shows connections of

- 24LC16B EEPROM

- DS1307 RTC

- SPE030 Speech Module ���������

�	
�

��

��

�

����

���

�	������
�������������

��
� �� !"

���

���

�#$

�%�

��&

�'

��(
)%

&
�

*

�����%��+

&�

&�

&

���

���

$(

�%�

��&

���

����(*���

���

��&

�%�

���

�%�
��&

$(

���%�,%- ���**(.,/ �(**%�
012� 13��4

�����1556��7� ��� ��! ��86�� ��

���

2

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

 What is the i2c bus?
The Inter-Integrated-Circuit (i2c) bus was originally

developed by Phillips Inc. for the transfer of data between

ICs at the PCB level. The physical interface of the

communication bus consists of just two lines – one for the

clock (SCL) and one for the data (SDA). These lines are

pulled high by resistors connected to the V+ rail. 4k7 is a

commonly used value for these resistors, although the

actual value used is not that critical. When either of the

master or slave ICs want to ‘transmit’, they pull the lines

low by transistors built inside the IC.

The IC that controls the bus is called the Master, and is often a microcontroller – in

this article a PICAXE-18X microcontroller will be used as the master device. The

other ICs connected to the bus are called Slaves. There can be more than one slave

on the bus, as long as each slave has been configured to have a unique ‘slave

address’ so that it can be uniquely identified on the bus. In theory there are up to

about 112 different addresses available, but most practical applications would

generally have between 1 and 10 slave ICs.

Why use the i2c bus?
Advantages:
· Most major semiconductor manufacturers produce many low-cost i2c

compatible ICs. The range of ICs available is quite extensive - memory

EEPROMs, real-time-clocks, ADCs, DACs, PWM motor/fan controllers, LED

drivers, digital potentiometers, digital temperature sensors etc. etc.

· Many of these ICs come in small 8 pin packages. This makes the circuit design

very straight forward.

· Many slave devices can be connected to the same bus, which only uses two of

the microcontroller pins. This is a very efficient use of the microcontroller pins.

· The bus design is very simple, using just two lines and two resistors.

Disadvantages:
· The i2c bus communication protocol is quite complicated. However this can be

easily overcome by using microcontroller systems such as PICAXE, which

provide simple BASIC style commands for all the i2c data transfers, and

therefore the end user needs no technical knowledge of the bus communication

protocols.

· Each slave IC will have a few unique setup parameters (e.g. slave address), which

must be extracted from the manufacturers datasheet. This is not normally that

difficult, once you know the main parameters that you are looking for!

�

��

)
%

��
*

�
)%

*

���

�'

��

%�1���7��%�

������7���&

���

�'

��

�%�

��&

(
)%

&
�

*

3

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

Slave Configuration Parameters
Although all i2c slave devices work in roughly the same way, there are four parameters

that must be checked from the manufacturer’s datasheet for each slave device used.

Parameter 1 - Slave Address
As already mentioned, each slave IC on the i2c bus must have a unique address. This is

not generally a problem when using different types of IC on the same bus, as most ICs

have a different default slave address.

The slave address is generally 7 bits long, with the 8th bit reserved to indicate whether the

master wishes to write to (1) or read from (0) the slave. A 10-bit slave address is also

possible, but is rarely used and so not covered in this article. This means the slave address

is often quoted in datasheets as, for instance, 1010000x, with x indicating the read/write

bit. When using the PICAXE system the state of this 8th bit is not important, as the

PICAXE system will automatically set or clear the bit as necessary for a read or a write.

However it is also possible that you may want to use two or more of the same type of IC

(e.g. memory EEPROM) on the same bus. This can be overcome by the use of external

address pins on the slave device, which can be connected (on the PCB design) to either

V+ or 0V to give each slave IC on the PCB a unique address. In the case of the popular

24LCxx series of EEPROMs there are 3 external address pins (A2, A1 and A0). By

connecting these pins to V+ or GND on your circuit design, you can ensure that up to 8

parts can be uniquely identified on the same bus.

For these ICs the datasheet slave address may be quoted as, for instance, 1010dddx, where

d is 1 or 0 depending on the state of the external address pin A2-A0.

Parameter 2 -Bus Speed (100 or 400kHz)
The maximum bus speed for data transfer between the master and slave is normally

400kHz. However some parts will only work up to 100kHz, and so the manufacturer

datasheet should be checked for each slave IC used. Note this is the maximum speed - all

parts can be run at the slower speed if desired.

Parameter 3 - Register Address Size (Byte or Word)
All data transfer from the master to the slave is a ‘write’, and this means that a byte of data

is transferred from the master to a ‘register’ within the slave IC. All data transfer from the

slave to the master is a ‘read’. Simpler slave devices have a maximum of 256 registers, and

so a ‘register address’ of one byte length can be used to identify the particular register of

interest. However larger devices, particularly memory EEPROMs, have more that 256

registers and so may need a ‘word’ (two byte) register address instead.

Parameter 4 – Page Write Buffer
All EEPROM memory chips require a ‘write time’ to save the data in the chip. This is

typically 5 or 10ms. When writing lots of data, this can cause a significant delay. To help

overcome this issue, many ICs have a page write buffer that can accept more than one

byte at once (typically 8, 16 or 32 bytes) so that all these bytes can be programmed at

once. This means, for instance, in the case of 8 bytes you only have one 10ms delay, rather

than 80ms of delay. Important Note: One of the biggest mistakes made by beginners is

that they don’t realise that page writes can only ‘start’ at a multiple of the buffer size, and

cannot overflow the page buffer size. In effect this means (for an 8 byte buffer) you can

write 8 bytes up from address 0 (or 8 or 16 etc.) but only up 6 bytes from address 2 (10,

18 etc.), or else you would overflow the 8 byte page write boundary.

4

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

2) Using i2c with the PICAXE System

Hardware
All the PICAXE X parts (18X, 28X, 40X) have two pins which

can be dedicated for the two i2c communication lines – SDA

and SCL. The typical electrical configuration is shown here.

Software
Communication with the slave device just requires three BASIC

commands – i2cslave, readi2c and writei2c

i2cslave
The i2cslave command is used to set up the slave parameters for each slave IC. The syntax is

i2cslave slave_address, bus_speed, address_size

where slave_address is the address (e.g. %10100000)

bus_speed is the keyword i2cfast (400kHz) or i2cslow (100kHz)

address_size is the keyword i2cbyte or i2cword as appropriate

writei2c
The writei2c command is used to write data to the slave. The syntax is

writei2c start_address,(data,data,data,data…)

where start_address is the start address (byte or word as appropriate)

data is bytes of data to be sent (either fixed values of variable contents)

(multiple bytes of data can be sent, but care should be taken not to exceed the page buffer size)

readi2c
The readi2c command is used to read data back from the slave into variables in the PICAXE. The syntax is

readi2c start_address,(variable, variable,…)

where start_address is the start address (byte or word as appropriate)

variable is where the returned data is stored in the master (b0, b1, b2 etc)

Example

To write the text “hello” (actually 5 bytes of data – one byte for each letter) to a 24LC16B memory IC and

then read it back into variables, the program would be

i2cslave %10100000, i2cfast, i2cbyte ‘ set slave parameters

writei2c 0,(“hello”) ‘ write the text

pause 10 ‘ wait 10ms write time

readi2c 0,(b0,b1,b2,b3,b4) ‘ read the data back again

debug b0 ‘ display data on screen

�

��

)
%

��
*

�
)%

*

���

�'

��

%�1���7��%�

������7���&

���

�'

��

�%�

��&

(
)%

&
�

*

5

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

3) Practical Example – 24LC16B EEPROM
Many projects involve the storage of data. This may be data collected during a

datalogging experiment, or pre-configured data built into the circuit at the time of

build (e.g. messages in different languages to be displayed on an LCD screen). The

PICAXE chips can generally store 128 or 256 bytes of data internally, but some projects

may require much more than this, and so an external memory storage IC is required.

External EEPROM (electrically-erasable-programmable-read-only-memories) ICs can be used to store

large amounts of data. Most EEPROMs store data in ‘blocks’ of 256 registers, each register storing one

byte of data. Simplest EEPROMs may only have one block of 256 registers, more expensive EEPROMs

can have up to 256 blocks, giving a total of 256 x 256 = 65536 (64k) memory registers.

The 24LCxx series EEPROMs are probably the most commonly used i2c EEPROM devices. Many

manufacturers make these parts, but we will only consider Microchip brand parts in this article

because these tend to be readily available via mail order catalogues. These EEPROMs can be written to

over 1 million times, and the EEPROM memory also retains data when the power is removed. Pin 7 of

the IC is a write-enable pin that can prevent the data being corrupted (keep the pin high to prevent

data being changed). Often this pin is connected to a microcontroller pin, so that the microcontroller

can control when data can be written (pull pin low to enable writes).

The cheapest EEPROMs (e.g. Microchip parts ending in the letter ‘B’) only use a single byte register

address, which by definition can only uniquely identify 256 registers. This means that the various

blocks (if they exist) must be identified in a different way. The 24LC16B has 8 blocks, the other

EEPROMS have less (see table below). The way these cheap EEPROMs overcome this address problem

is by merging the block address into the slave address. This means, in effect, that a single 24LC16B

‘appears’ on the i2c bus as 8 different ‘slaves’, each slave having a unique address and containing 256

registers. This system might at first appear quite strange, but the IC is constructed this way to keep the

cost of the IC to a minimum. However this system does have the downfall that only one part can be

used per bus (the external IC pins A2-A0 are not actually physically connected within these cheaper ‘B’

parts).

The more expensive EEPROMS (24LC32 upwards) use a word register address, and so the block

address can be incorporated within the normal register word address. This means the EEPROM

appears on the i2c bus as a single slave, and so up to 8 identical devices can be connected to the bus

by configuring the external A2 to A0 address pins accordingly. Using 8 of the commonly available

24LC256 EEPROMs will give a huge 2Mb of memory!

Device Registers Buffer Slave Speed Address
24LC01B 128 8 %1010xxxx i2cfast (400kHz) i2cbyte

24LC02B 256 8 %1010xxxx i2cfast (400kHz) i2cbyte

24LC04B 512 16 %1010xxbx i2cfast (400kHz) i2cbyte

24LC08B 1k (1024) 16 %1010xbbx i2cfast (400kHz) i2cbyte

24LC16B 2k (2048) 16 %1010bbbx i2cfast (400kHz) i2cbyte

24LC32A 4k (4096) 32 %1010dddx i2cfast (400kHz) i2cword

24LC65 8k (8192) 64 %1010dddx i2cfast (400kHz) i2cword

24LC128 16k (16384) 64 %1010dddx i2cfast (400kHz) i2cword

24LC256 32k (32768) 64 %1010dddx i2cfast (400kHz) i2cword

24LC512 64k (65536) 128 %1010dddx i2cfast (400kHz) i2cword

where b = block address (internal to EEPROM)

d = device address (configured by external pins A2, A1, A0)

x = don’t care

6

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

Saving Data
The following example reads the data from a digital temperature sensor (on input 7 of

the PICAXE master) and a LDR light sensor (on input 0) every minute for an hour. The

data is saved in a 24LC04B, 24LC08B or 24LC16B EEPROM. Each temperature reading

is saved in the first block (000) of the memory, and each light reading is saved in the

second block (001) of the memory. A for..next loop is used to repeat the action 60

times, and the loop counter value (0 to 59) is used as the address to save the data

within the appropriate memory block.

for b1 = 0 to 59 ‘ start for…next loop

 readtemp 7,b2 ‘ read temp value from 7

 i2cslave %10100000, i2cfast, i2cbyte ‘ set block0 parameters

 writei2c b1,(b2) ‘ write the value

 pause 10 ‘ wait EEPROM write time

 readadc 0,b3 ‘ read light value from 0

 i2cslave %10100010, i2cfast, i2cbyte ‘ set block1 parameters

 writei2c b1,(b3) ‘ write the value

 pause 60000 ‘ wait 1 minute

next b1 ‘ next loop

Reading Data

The following example reads back the data saved in the example above, and displays

the data on a Serial LCD Module (part AXE033). The serout command is the command

that transmits the data from the PICAXE master to the serial LCD module (connected

on output 6). The temperature value is shown on the top line of the display, the light

value on the bottom line of the display. Each reading is displayed for 2 seconds.

 for b1 = 0 to 59 ‘ start for…next loop

i2cslave %10100000, i2cfast, i2cbyte ‘ set block0 parameters

readi2c b1,(b2) ‘ read the temp value

i2cslave %10100010, i2cfast, i2cbyte ‘ set block1 parameters

readi2c b1,(b3) ‘ read the light value

serout 6,N2400,(254,128,”Temp Value =”,#b2, “ “) ‘ display temp

serout 6,N2400,(254,192,”Light Value =”,#b3, “ “) ‘ display light

pause 2000 ‘ wait 2 seconds

 next b1 ‘ next loop

����+�

�	
�

��

(
)%

&
�

*

�6"26���!�6
�63�1�

���

�'

��

 32!�
2 3�

�'
8���
��

���

��.

 32!�
2 3�

7

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

4) Practical Example – DS1307 Real Time Clock
The Maxim/Dallas Semiconductor DS1307 is an accurate real-time-clock, which

automatically maintains the current time and date, including compensation for

months with less than 31 days and leap years. The DS1307 is an 8 pin device, and a

standard low-cost 32.768 kHz 12pF quartz watch crystal is connected to pins 1 and 2

to provide the accurate time base. An optional 3V lithium ‘backup’ cell can also be

connected to pin 3, this ensures that the time is kept up to date when the main circuit

power is removed. The IC automatically detects removal of the main power source and

moves to the lithium cell power as and when required. The cell should last at least ten

years.

The DS1307 also has two additional features of interest. Pin 7 is an open collector

output that can be programmed to ‘flash’ at 1Hz. This allows an LED to be attached as

a ‘seconds indicator’ in clock applications. The IC also contains 56 bytes of general

purpose RAM, which can be used as extra memory by the master if required.

From the manufacturers datasheet for the DS1307 (www.dalsemi.com), the following

i2c details can be found:

slave address - 1101000x

address size - 1 byte

bus speed - 100kHz

The registers of the DS1307 are defined as follows:

Address Register
00 Seconds (0-59)

01 Minutes (0-59)

02 Hours (0-23)

03 Day of Week (1-7)

04 Date (1-31)

05 Month (1-12)

06 Year (00-99)

07 Control (set to 16 ($10))

08-$3F General Purpose RAM

All the time/date data is in BCD (binary-coded-decimal) format, which makes it very

easy to read and write using hex notation e.g. 11:35am will contain $11 in the hours

register and $35 in the minutes register.

8

revolution Revolution Education Ltd. Email: info@rev-ed.co.uk Web: www.rev-ed.co.uk Version 1.2 24/10/03
AXE110_i2c.P65

PICAXE and the i2c bus

Setting the Time / Date
To set the correct time after the circuit is first powered up, the current time must be

written to the registers. The following example PICAXE program will setup the time

to 11:59:00 on Thursday 25/12/03.

This is carried out by loading the registers in order from address 00 upwards i.e.

seconds then minutes then hours etc.

i2cslave %11010000, i2cslow, i2cbyte

writei2c 0, ($00, $59, $11, $03, $25, $12, $03, $10)

end

Reading the Time / Date
To read the current time you can use the following program to load variables within

the PICAXE with the various register values from the DS1307. Calculations can then

be carried out to see, for instance, if a particular alarm point has been reached. This

example program acts as an alarm clock, checking the time every 30 seconds. If the

time is exactly 07:00 then a buzzer, connected to output 7, will sound for 20

seconds.

i2cslave %11010000, i2cslow, i2cbyte ‘ set slave parameter

loop:

pause 30000 ‘ wait 30 sec

readi2c 0, (b0, b1, b2) ‘ read sec, min, hour

if b2 <> $07 then loop ‘ if hour not 7 loop

if b1 <> $00 then loop ‘ if min not 00 loop

high 7 ‘ switch on buzzer

pause 20000 ‘ wait 20 sec

low 7 ‘ switch off buzzer

pause 60000 ‘ wait 60 sec to prevent repeat

goto loop ‘ loop

5) Practical Example – SPE030 Speech module.
The SPE030 module is a speech synthesizer that will speak the text sent to it over

the i2c bus.

From the SPE030 datasheet (spe030.pdf), the following i2c details can be found:

slave address - $C4

address size - 1 byte

bus speed - 400kHz

The following program will generate the speech “hello PICAXE user”. For further

information see the SPE030 datasheet (spe030.pdf).

i2cslave $C4,i2cfast,i2cbyte

writei2c 0,(0,0,5,3,”hello pickacks user”,0)

writei2c 0,(64)

Binary Oct Dec Hex Glyph

010 0000 040 32 20 SP

010 0001 041 33 21 !

010 0010 042 34 22 "

010 0011 043 35 23 #

010 0100 044 36 24 $

010 0101 045 37 25 %

010 0110 046 38 26 &

010 0111 047 39 27 '

010 1000 050 40 28 (

010 1001 051 41 29)

010 1010 052 42 2A *

010 1011 053 43 2B +

010 1100 054 44 2C ,

010 1101 055 45 2D -

010 1110 056 46 2E .

010 1111 057 47 2F /

011 0000 060 48 30 0

011 0001 061 49 31 1

011 0010 062 50 32 2

 Binary Oct Dec Hex Glyph

100 0000 100 64 40 @

100 0001 101 65 41 A

100 0010 102 66 42 B

100 0011 103 67 43 C

100 0100 104 68 44 D

100 0101 105 69 45 E

100 0110 106 70 46 F

100 0111 107 71 47 G

100 1000 110 72 48 H

100 1001 111 73 49 I

100 1010 112 74 4A J

100 1011 113 75 4B K

100 1100 114 76 4C L

100 1101 115 77 4D M

100 1110 116 78 4E N

100 1111 117 79 4F O

101 0000 120 80 50 P

101 0001 121 81 51 Q

101 0010 122 82 52 R

 Binary Oct Dec Hex Glyph

110 0000 140 96 60 `

110 0001 141 97 61 a

110 0010 142 98 62 b

110 0011 143 99 63 c

110 0100 144 100 64 d

110 0101 145 101 65 e

110 0110 146 102 66 f

110 0111 147 103 67 g

110 1000 150 104 68 h

110 1001 151 105 69 i

110 1010 152 106 6A j

110 1011 153 107 6B k

110 1100 154 108 6C l

110 1101 155 109 6D m

110 1110 156 110 6E n

110 1111 157 111 6F o

111 0000 160 112 70 p

111 0001 161 113 71 q

111 0010 162 114 72 r

011 0011 063 51 33 3

011 0100 064 52 34 4

011 0101 065 53 35 5

011 0110 066 54 36 6

011 0111 067 55 37 7

011 1000 070 56 38 8

011 1001 071 57 39 9

011 1010 072 58 3A :

011 1011 073 59 3B ;

011 1100 074 60 3C <

011 1101 075 61 3D =

011 1110 076 62 3E >

011 1111 077 63 3F ?

101 0011 123 83 53 S

101 0100 124 84 54 T

101 0101 125 85 55 U

101 0110 126 86 56 V

101 0111 127 87 57 W

101 1000 130 88 58 X

101 1001 131 89 59 Y

101 1010 132 90 5A Z

101 1011 133 91 5B [

101 1100 134 92 5C \

101 1101 135 93 5D]

101 1110 136 94 5E ^

101 1111 137 95 5F _

111 0011 163 115 73 s

111 0100 164 116 74 t

111 0101 165 117 75 u

111 0110 166 118 76 v

111 0111 167 119 77 w

111 1000 170 120 78 x

111 1001 171 121 79 y

111 1010 172 122 7A z

111 1011 173 123 7B {

111 1100 174 124 7C |

111 1101 175 125 7D }

111 1110 176 126 7E ~

profile | register

Show topics from last day

Forums | No new posts please! 4 |

DS1307+Correction
Post Reply Send Topic To a Friend

Author Topic

tarzan Posted - 16 March 2004 16:49

After some head scratching here is the corrected file for DS1307.bas

It’s the tens digit that needed attention (/ 16).
Technical please note.

; Example of how to use DS1307 Time Clock (i2c device)
; Note the data is sent/received in BCD format.

symbol seconds = b0

symbol mins = b1
symbol hour = b2
symbol day = b3
symbol date = b4

symbol month = b5
symbol year = b6
symbol control = b7

symbol temp = b8

' set DS1307 slave address
i2cslave %11010000, i2cslow, i2cbyte

' uncomment this line to update the clock time

' goto start_clock

' read time and date and display on serial LCD module

main:
readi2c 0,(seconds,mins,hour,day,date,month,year)

' debug b0 '(optional debug computer to screen)

serout 7,N2400,(254,128) 'start of first line

let temp = date & %00110000 / 16
serout 7,N2400,(#temp)

let temp = date & %00001111
serout 7,N2400,(#temp,"/")

let temp = month & %0001000 / 16
serout 7,N2400,(#temp)

let temp = month & %00001111
serout 7,N2400,(#temp,"/")

let temp = year & %11110000 / 16

Page 1 of 4PICAXE

http://www.rev-ed.co.uk/picaxe/forum/Topic.asp?topic_id=1080&forum_id=9&Topic_Title=DS1...

serout 7,N2400,(#temp)
let temp = year & %00001111

serout 7,N2400,(#temp," ")

let temp = hour & %00110000 / 16
serout 7,N2400,(#temp)
let temp = hour & %00001111

serout 7,N2400,(#temp,":")

let temp = mins & %01110000 / 16
serout 7,N2400,(#temp)
let temp = mins & %00001111
serout 7,N2400,(#temp,":")

let temp = seconds & %01110000 / 16
serout 7,N2400,(#temp)
let temp = seconds & %00001111
serout 7,N2400,(#temp)

pause 5000

goto main

'write time and date e.g. to 11:59:00 on Thurs 25/12/03
start_clock:
let seconds = $00 ' 00 Note all BCD format

let mins = $59 ' 59 Note all BCD format
let hour = $11 ' 11 Note all BCD format
let day = $03 ' 03 Note all BCD format

let date = $25 ' 25 Note all BCD format
let month = $12 ' 12 Note all BCD format
let year = $03 ' 03 Note all BCD format
let control = %00010000 ' Enable output at 1Hz

writei2c 0,(seconds,mins,hour,day,date,month,year,control)

end

I prefer using two lines so you can see the seconds.

; Example of how to use DS1307 Time Clock (i2c device)

; Note the data is sent/received in BCD format.

symbol seconds = b0
symbol mins = b1
symbol hour = b2
symbol day = b3

symbol date = b4
symbol month = b5
symbol year = b6

symbol control = b7
symbol temp = b8

' set DS1307 slave address
i2cslave %11010000, i2cslow, i2cbyte

' uncomment this line to update the clock time

Page 2 of 4PICAXE

http://www.rev-ed.co.uk/picaxe/forum/Topic.asp?topic_id=1080&forum_id=9&Topic_Title=DS1...

' goto start_clock

' read time and date and display on serial LCD module

init:
serout 7,N2400,(254,1) 'clear LCD
pause 30

main:

readi2c 0,(seconds,mins,hour,day,date,month,year)

'debug b0 '(optional debug computer to screen)

serout 7,N2400,(254,192)

let temp = date & %00110000 / 16
serout 7,N2400,(#temp)
let temp = date & %00001111
serout 7,N2400,(#temp,"/")

let temp = month & %00001000 / 16
serout 7,N2400,(#temp)
let temp = month & %00001111
serout 7,N2400,(#temp,"/")

let temp = year & %11110000 / 16

serout 7,N2400,(#temp)
let temp = year & %00001111
serout 7,N2400,(#temp," ")

serout 7,N2400,(254,128)

let temp = hour & %00110000 / 16

serout 7,N2400,(#temp)
let temp = hour & %00001111
serout 7,N2400,(#temp,":")

let temp = mins & %01110000 / 16

serout 7,N2400,(#temp)
let temp = mins & %00001111
serout 7,N2400,(#temp,":")

let temp = seconds & %01110000 / 16

serout 7,N2400,(#temp)
let temp = seconds & %00001111
serout 7,N2400,(#temp)

pause 100

goto main

'write time and date e.g. to 11:59:00 on Thurs 25/12/03
start_clock:
let seconds = $00 ' 00 Note all BCD format

let mins = $59 ' 59 Note all BCD format
let hour = $11 ' 11 Note all BCD format
let day = $03 ' 03 Note all BCD format

Page 3 of 4PICAXE

http://www.rev-ed.co.uk/picaxe/forum/Topic.asp?topic_id=1080&forum_id=9&Topic_Title=DS1...

let date = $25 ' 25 Note all BCD format
let month = $12 ' 12 Note all BCD format

let year = $03 ' 03 Note all BCD format
let control = %00010000 ' Enable output at 1Hz

writei2c 0,(seconds,mins,hour,day,date,month,year,control)
goto main

end

Edited by - tarzan on 3/16/2004 5:15:48 PM

Edited by - tarzan on 3/16/2004 5:57:39 PM

Click Here To Close Thread, Administrators & Moderators Only.

Show All Forums | Post Reply

Revolution Education Ltd, 4 Old Dairy Business Centre, Melcombe Road, Bath, BA2 3LR

Tel: +44 (0)1225 340563 Fax: +44 (0)1225 340564 Email: info@rev-ed.co.uk

Page 4 of 4PICAXE

http://www.rev-ed.co.uk/picaxe/forum/Topic.asp?topic_id=1080&forum_id=9&Topic_Title=DS1...

1 of 12 100101

FEATURES
� Real-time clock (RTC) counts seconds,

minutes, hours, date of the month, month, day
of the week, and year with leap-year
compensation valid up to 2100

� 56-byte, battery-backed, nonvolatile (NV)
RAM for data storage

� Two-wire serial interface
� Programmable squarewave output signal
� Automatic power-fail detect and switch

circuitry
� Consumes less than 500nA in battery backup

mode with oscillator running
� Optional industrial temperature range:

-40°C to +85°C
� Available in 8-pin DIP or SOIC
� Underwriters Laboratory (UL) recognized

ORDERING INFORMATION
DS1307 8-Pin DIP (300-mil)
DS1307Z 8-Pin SOIC (150-mil)
DS1307N 8-Pin DIP (Industrial)
DS1307ZN 8-Pin SOIC (Industrial)

PIN ASSIGNMENT

PIN DESCRIPTION
VCC - Primary Power Supply
X1, X2 - 32.768kHz Crystal Connection
VBAT - +3V Battery Input
GND - Ground
SDA - Serial Data
SCL - Serial Clock
SQW/OUT - Square Wave/Output Driver

DESCRIPTION
The DS1307 Serial Real-Time Clock is a low-power, full binary-coded decimal (BCD) clock/calendar
plus 56 bytes of NV SRAM. Address and data are transferred serially via a 2-wire, bi-directional bus.
The clock/calendar provides seconds, minutes, hours, day, date, month, and year information. The end of
the month date is automatically adjusted for months with fewer than 31 days, including corrections for
leap year. The clock operates in either the 24-hour or 12-hour format with AM/PM indicator. The
DS1307 has a built-in power sense circuit that detects power failures and automatically switches to the
battery supply.

DS1307
64 x 8 Serial Real-Time Clock

www.maxim-ic.com

DS1307 8-Pin SOIC (150-mil)

DS1307 8-Pin DIP (300-mil)

X1
X2

VBAT

GND

VCC

SQW/OUT
SCL

l
2

3
4

8
7

6
5 SDA

l

2

3
4

8

7

6
5

X1
X2

VBAT

GND

VCC

SQW/OUT
SCL
SDA

DS1307

2 of 12

OPERATION
The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a START
condition and providing a device identification code followed by a register address. Subsequent registers
can be accessed sequentially until a STOP condition is executed. When VCC falls below 1.25 x VBAT the
device terminates an access in progress and resets the device address counter. Inputs to the device will
not be recognized at this time to prevent erroneous data from being written to the device from an out of
tolerance system. When VCC falls below VBAT the device switches into a low-current battery backup
mode. Upon power-up, the device switches from battery to VCC when VCC is greater than VBAT + 0.2V
and recognizes inputs when VCC is greater than 1.25 x VBAT. The block diagram in Figure 1 shows the
main elements of the serial RTC.

DS1307 BLOCK DIAGRAM Figure 1

TYPICAL OPERATING CIRCUIT

DS1307

3 of 12

SIGNAL DESCRIPTIONS
VCC, GND – DC power is provided to the device on these pins. VCC is the +5V input. When 5V is
applied within normal limits, the device is fully accessible and data can be written and read. When a 3V
battery is connected to the device and VCC is below 1.25 x VBAT, reads and writes are inhibited. However,
the timekeeping function continues unaffected by the lower input voltage. As VCC falls below VBAT the
RAM and timekeeper are switched over to the external power supply (nominal 3.0V DC) at VBAT.

VBAT – Battery input for any standard 3V lithium cell or other energy source. Battery voltage must be
held between 2.0V and 3.5V for proper operation. The nominal write protect trip point voltage at which
access to the RTC and user RAM is denied is set by the internal circuitry as 1.25 x VBAT nominal. A
lithium battery with 48mAhr or greater will back up the DS1307 for more than 10 years in the absence of
power at 25ºC. UL recognized to ensure against reverse charging current when used in conjunction with a
lithium battery.

See “Conditions of Acceptability” at http://www.maxim-ic.com/TechSupport/QA/ntrl.htm.

SCL (Serial Clock Input) – SCL is used to synchronize data movement on the serial interface.

SDA (Serial Data Input/Output) – SDA is the input/output pin for the 2-wire serial interface. The SDA
pin is open drain which requires an external pullup resistor.

SQW/OUT (Square Wave/Output Driver) – When enabled, the SQWE bit set to 1, the SQW/OUT pin
outputs one of four square wave frequencies (1Hz, 4kHz, 8kHz, 32kHz). The SQW/OUT pin is open
drain and requires an external pull-up resistor. SQW/OUT will operate with either Vcc or Vbat applied.

X1, X2 – Connections for a standard 32.768kHz quartz crystal. The internal oscillator circuitry is
designed for operation with a crystal having a specified load capacitance (CL) of 12.5pF.

For more information on crystal selection and crystal layout considerations, please consult Application
Note 58, “Crystal Considerations with Dallas Real-Time Clocks.” The DS1307 can also be driven by an
external 32.768kHz oscillator. In this configuration, the X1 pin is connected to the external oscillator
signal and the X2 pin is floated.

RECOMMENDED LAYOUT FOR CRYSTAL

http://www.maxim-ic.com/TechSupport/QA/ntrl.htm

DS1307

4 of 12

CLOCK ACCURACY
The accuracy of the clock is dependent upon the accuracy of the crystal and the accuracy of the match
between the capacitive load of the oscillator circuit and the capacitive load for which the crystal was
trimmed. Additional error will be added by crystal frequency drift caused by temperature shifts. External
circuit noise coupled into the oscillator circuit may result in the clock running fast. See Application Note
58, “Crystal Considerations with Dallas Real-Time Clocks” for detailed information.

Please review Application Note 95, “Interfacing the DS1307 with a 8051-Compatible Microcontroller”
for additional information.

RTC AND RAM ADDRESS MAP
The address map for the RTC and RAM registers of the DS1307 is shown in Figure 2. The RTC registers
are located in address locations 00h to 07h. The RAM registers are located in address locations 08h to
3Fh. During a multi-byte access, when the address pointer reaches 3Fh, the end of RAM space, it wraps
around to location 00h, the beginning of the clock space.

DS1307 ADDRESS MAP Figure 2

CLOCK AND CALENDAR
The time and calendar information is obtained by reading the appropriate register bytes. The RTC
registers are illustrated in Figure 3. The time and calendar are set or initialized by writing the appropriate
register bytes. The contents of the time and calendar registers are in the BCD format. Bit 7 of register 0
is the clock halt (CH) bit. When this bit is set to a 1, the oscillator is disabled. When cleared to a 0, the
oscillator is enabled.

Please note that the initial power-on state of all registers is not defined. Therefore, it is important
to enable the oscillator (CH bit = 0) during initial configuration.

The DS1307 can be run in either 12-hour or 24-hour mode. Bit 6 of the hours register is defined as the
12- or 24-hour mode select bit. When high, the 12-hour mode is selected. In the 12-hour mode, bit 5 is
the AM/PM bit with logic high being PM. In the 24-hour mode, bit 5 is the second 10 hour bit (20-
23 hours).

On a 2-wire START, the current time is transferred to a second set of registers. The time information is
read from these secondary registers, while the clock may continue to run. This eliminates the need to re-
read the registers in case of an update of the main registers during a read.

SECONDS

MINUTES

HOURS

DAY

DATE

MONTH

YEAR

CONTROL

RAM
56 x 8

00H

07H
08H

3FH

DS1307

5 of 12

DS1307 TIMEKEEPER REGISTERS Figure 3

CONTROL REGISTER
The DS1307 control register is used to control the operation of the SQW/OUT pin.

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
OUT 0 0 SQWE 0 0 RS1 RS0

OUT (Output control): This bit controls the output level of the SQW/OUT pin when the square wave
output is disabled. If SQWE = 0, the logic level on the SQW/OUT pin is 1 if OUT = 1 and is 0 if
OUT = 0.

SQWE (Square Wave Enable): This bit, when set to a logic 1, will enable the oscillator output. The
frequency of the square wave output depends upon the value of the RS0 and RS1 bits. With the square
wave output set to 1Hz, the clock registers update on the falling edge of the square wave.

RS (Rate Select): These bits control the frequency of the square wave output when the square wave
output has been enabled. Table 1 lists the square wave frequencies that can be selected with the RS bits.

SQUAREWAVE OUTPUT FREQUENCY Table 1
RS1 RS0 SQW OUTPUT FREQUENCY

0 0 1Hz
0 1 4.096kHz
1 0 8.192kHz
1 1 32.768kHz

0

0

0 0 0 0

000

00

00000

DS1307

6 of 12

2-WIRE SERIAL DATA BUS
The DS1307 supports a bi-directional, 2-wire bus and data transmission protocol. A device that sends
data onto the bus is defined as a transmitter and a device receiving data as a receiver. The device that
controls the message is called a master. The devices that are controlled by the master are referred to as
slaves. The bus must be controlled by a master device that generates the serial clock (SCL), controls the
bus access, and generates the START and STOP conditions. The DS1307 operates as a slave on the 2-
wire bus. A typical bus configuration using this 2-wire protocol is show in Figure 4.

TYPICAL 2-WIRE BUS CONFIGURATION Figure 4

Figures 5, 6, and 7 detail how data is transferred on the 2-wire bus.

� Data transfer may be initiated only when the bus is not busy.
� During data transfer, the data line must remain stable whenever the clock line is HIGH. Changes in

the data line while the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Bus not busy: Both data and clock lines remain HIGH.

Start data transfer: A change in the state of the data line, from HIGH to LOW, while the clock is HIGH,
defines a START condition.

Stop data transfer: A change in the state of the data line, from LOW to HIGH, while the clock line is
HIGH, defines the STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line
is stable for the duration of the HIGH period of the clock signal. The data on the line must be changed
during the LOW period of the clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The
number of data bytes transferred between START and STOP conditions is not limited, and is determined
by the master device. The information is transferred byte-wise and each receiver acknowledges with a
ninth bit. Within the 2-wire bus specifications a regular mode (100kHz clock rate) and a fast mode
(400kHz clock rate) are defined. The DS1307 operates in the regular mode (100kHz) only.

DS1307

7 of 12

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the
reception of each byte. The master device must generate an extra clock pulse which is associated with
this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a
way that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse. Of
course, setup and hold times must be taken into account. A master must signal an end of data to the slave
by not generating an acknowledge bit on the last byte that has been clocked out of the slave. In this case,
the slave must leave the data line HIGH to enable the master to generate the STOP condition.

DATA TRANSFER ON 2-WIRE SERIAL BUS Figure 5

Depending upon the state of the R/ W bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the
master is the slave address. Next follows a number of data bytes. The slave returns an acknowledge
bit after each received byte. Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is
transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave
transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes
other than the last byte. At the end of the last received byte, a “not acknowledge” is returned.

The master device generates all of the serial clock pulses and the START and STOP conditions. A
transfer is ended with a STOP condition or with a repeated START condition. Since a repeated START
condition is also the beginning of the next serial transfer, the bus will not be released. Data is transferred
with the most significant bit (MSB) first.

DS1307

8 of 12

The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and
SCL. After each byte is received an acknowledge bit is transmitted. START and STOP conditions
are recognized as the beginning and end of a serial transfer. Address recognition is performed by
hardware after reception of the slave address and *direction bit (See Figure 6). The address byte is
the first byte received after the start condition is generated by the master. The address byte contains
the 7 bit DS1307 address, which is 1101000, followed by the *direction bit (R/ W) which, for a write,
is a 0. After receiving and decoding the address byte the device outputs an acknowledge on the SDA
line. After the DS1307 acknowledges the slave address + write bit, the master transmits a register
address to the DS1307 This will set the register pointer on the DS1307. The master will then begin
transmitting each byte of data with the DS1307 acknowledging each byte received. The master will
generate a stop condition to terminate the data write.

DATA WRITE – SLAVE RECEIVER MODE Figure 6

2. Slave transmitter mode (DS1307 read mode): The first byte is received and handled as in the slave
receiver mode. However, in this mode, the *direction bit will indicate that the transfer direction is
reversed. Serial data is transmitted on SDA by the DS1307 while the serial clock is input on SCL.
START and STOP conditions are recognized as the beginning and end of a serial transfer (See
Figure 7). The address byte is the first byte received after the start condition is generated by the
master. The address byte contains the 7-bit DS1307 address, which is 1101000, followed by the
*direction bit (R/ W) which, for a read, is a 1. After receiving and decoding the address byte the
device inputs an acknowledge on the SDA line. The DS1307 then begins to transmit data starting
with the register address pointed to by the register pointer. If the register pointer is not written to
before the initiation of a read mode the first address that is read is the last one stored in the register
pointer. The DS1307 must receive a “not acknowledge” to end a read.

DATA READ – SLAVE TRANSMITTER MODE Figure 7

DS1307

9 of 12

ABSOLUTE MAXIMUM RATINGS*
Voltage on Any Pin Relative to Ground -0.5V to +7.0V
Storage Temperature -55°C to +125°C
Soldering Temperature 260°C for 10 seconds DIP

See JPC/JEDEC Standard J-STD-020A for
Surface Mount Devices

* This is a stress rating only and functional operation of the device at these or any other conditions above
those indicated in the operation sections of this specification is not implied. Exposure to absolute
maximum rating conditions for extended periods of time may affect reliability.

Range Temperature VCC
Commercial 0°C to +70°C 4.5V to 5.5V VCC1

Industrial -40°C to +85°C 4.5V to 5.5V VCC1

RECOMMENDED DC OPERATING CONDITIONS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Supply Voltage VCC 4.5 5.0 5.5 V
Logic 1 VIH 2.2 VCC + 0.3 V
Logic 0 VIL -0.5 +0.8 V
VBAT Battery Voltage VBAT 2.0 3.5 V

*Unless otherwise specified.

DC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
Input Leakage (SCL) ILI 1 �A
I/O Leakage (SDA &
SQW/OUT)

ILO 1 �A

Logic 0 Output (IOL = 5mA) VOL 0.4 V
Active Supply Current ICCA 1.5 mA 7
Standby Current ICCS 200 �A 1
Battery Current (OSC ON);
SQW/OUT OFF

IBAT1 300 500 nA 2

Battery Current (OSC ON);
SQW/OUT ON (32kHz)

IBAT2 480 800 nA

Power-Fail Voltage VPF 1.216 x VBAT 1.25 x VBAT 1.284 x VBAT V 8
*Unless otherwise specified.

DS1307

10 of 12

AC ELECTRICAL CHARACTERISTICS
(Over the operating range*)

PARAMETER SYMBOL MIN TYP MAX UNITS NOTES
SCL Clock Frequency fSCL 0 100 kHz
Bus Free Time Between a STOP and
START Condition

tBUF 4.7 �s

Hold Time (Repeated) START Condition tHD:STA 4.0 �s 3
LOW Period of SCL Clock tLOW 4.7 �s
HIGH Period of SCL Clock tHIGH 4.0 �s
Set-up Time for a Repeated START
Condition

tSU:STA 4.7 �s

Data Hold Time tHD:DAT 0 �s 4,5
Data Set-up Time tSU:DAT 250 ns
Rise Time of Both SDA and SCL Signals tR 1000 ns
Fall Time of Both SDA and SCL Signals tF 300 ns
Set-up Time for STOP Condition tSU:STO 4.7 �s
Capacitive Load for each Bus Line CB 400 pF 6

I/O Capacitance (TA = 25ºC)
CI/O 10 pF

Crystal Specified Load Capacitance
(TA = 25ºC)

12.5 pF

*Unless otherwise specified.

NOTES:
1. ICCS specified with VCC = 5.0V and SDA, SCL = 5.0V.
2. VCC = 0V, VBAT = 3V.
3. After this period, the first clock pulse is generated.
4. A device must internally provide a hold time of at least 300ns for the SDA signal (referred to the

VIHMIN of the SCL signal) in order to bridge the undefined region of the falling edge of SCL.
5. The maximum tHD:DAT has only to be met if the device does not stretch the LOW period (tLOW) of the

SCL signal.
6. CB – Total capacitance of one bus line in pF.
7. ICCA – SCL clocking at max frequency = 100kHz.
8. VPF measured at VBAT = 3.0V.

DS1307

11 of 12

TIMING DIAGRAM Figure 8

DS1307 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN DIP MECHANICAL DIMENSIONS

PKG 8-PIN
DIM MIN MAX

A IN.
MM

0.360
9.14

0.400
10.16

B IN.
MM

0.240
6.10

0.260
6.60

C IN.
MM

0.120
3.05

0.140
3.56

D IN.
MM

0.300
7.62

0.325
8.26

E IN.
MM

0.015
0.38

0.040
1.02

F IN.
MM

0.120
3.04

0.140
3.56

G IN.
MM

0.090
2.29

0.110
2.79

H IN.
MM

0.320
8.13

0.370
9.40

J IN.
MM

0.008
0.20

0.012
0.30

K IN.
MM

0.015
0.38

0.021
0.53

DS1307

12 of 12

DS1307Z 64 X 8 SERIAL REAL-TIME CLOCK
8-PIN SOIC (150-MIL) MECHANICAL DIMENSIONS

PKG 8-PIN
(150 MIL)

DIM MIN MAX
A IN.
MM

0.188
4.78

0.196
4.98

B IN.
MM

0.150
3.81

0.158
4.01

C IN.
MM

0.048
1.22

0.062
1.57

E IN.
MM

0.004
0.10

0.010
0.25

F IN.
MM

0.053
1.35

0.069
1.75

G IN.
MM

0.050 BSC
1.27 BSC

H IN.
MM

0.230
5.84

0.244
6.20

J IN.
MM

0.007
0.18

0.011
0.28

K IN.
MM

0.012
0.30

0.020
0.51

L IN.
MM

0.016
0.41

0.050
1.27

phi 0� 8�
56-G2008-001

Binary-coded decimal

From Wikipedia, the free encyclopedia

In computing and electronic systems, Binary-coded decimal (BCD) is an encoding for decimal

numbers in which each digit is represented by its own binary sequence. Its main virtue is that it

allows easy conversion to decimal digits for printing or display and faster decimal calculations. Its

drawbacks are the increased complexity of circuits needed to implement mathematical operations
and a relatively inefficient encoding – 6 wasted patterns per digit. Even though the importance of

BCD has diminished, it is still widely used in financial, commercial, and industrial applications.

In BCD, a digit is usually represented by four bits which, in general, represent the

values/digits/characters 0-9. Other combinations are sometimes used for sign or other indications.

Basics

To BCD-encode a decimal number using the common encoding, each decimal digit is stored in a
four-bit nibble.

Thus, the BCD encoding for the number 127 would be:

Since most computers store data in eight-bit bytes, there are two common ways of storing four-bit

BCD digits in those bytes:

Contents

� 1 Basics
� 2 BCD in electronics
� 3 Packed BCD

� 3.1 Fixed-point packed decimal
� 3.2 Higher-density encodings

� 4 Zoned decimal
� 4.1 Fixed-point zone decimal

� 5 IBM and BCD
� 6 Addition With BCD
� 7 Background
� 8 Legal history
� 9 Comparison with pure binary

� 9.1 Advantages
� 9.2 Disadvantages

� 10 Representational variations
� 11 See also
� 12 External links
� 13 References

Decimal: 0 1 2 3 4 5 6 7 8 9

BCD: 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001

 0001 0010 0111

Page 1 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

� each digit is stored in one byte, and the other four bits are then set to all zeros, all ones (as in
the EBCDIC code), or to 0011 (as in the ASCII code)

� two digits are stored in each byte.

Unlike binary encoded numbers, BCD encoded numbers can easily be displayed by mapping each of

the nibbles to a different character. Converting a binary encoded number to decimal for display is

much harder involving integer multiplication or divide operations. The BIOS in many PCs keeps the

date and time in BCD format, probably for historical reasons (it avoided the need for binary to
ASCII conversion).

BCD in electronics

BCD is very common in electronic systems where a numeric value is to be displayed, especially in
systems consisting solely of digital logic, and not containing a microprocessor. By utilising BCD, the

manipulation of numerical data for display can be greatly simplified by treating each digit as a

separate single sub-circuit. This matches much more closely the physical reality of display

hardware—a designer might choose to use a series of separate identical 7-segment displays to build a
metering circuit, for example. If the numeric quantity were stored and manipulated as pure binary,

interfacing to such a display would require complex circuitry. Therefore, in cases where the
calculations are relatively simple working throughout with BCD can lead to a simpler overall system
than converting to 'pure' binary.

The same argument applies when hardware of this type uses an embedded microcontroller or other
small processor. Often, smaller code results when representing numbers internally in BCD format,
since a conversion from or to binary representation can be expensive on such limited processors. For
these applications, some small processors feature BCD arithmetic modes, which assist when writing
routines that manipulate BCD quantities.

Packed BCD

A widely used variation of the two-digits-per-byte encoding is called packed BCD (or simply
packed decimal), where numbers are stored with two decimal digits "packed" into one byte each,

and the last digit (or nibble) is used as a sign indicator. The preferred sign values are 1100 (hex C)
for positive (+) and 1101 (hex D) for negative (−); other allowed signs are 1010 (A) and 1110 (E) for

positive and 1011 (B) for negative. Some implementations also provide unsigned BCD values with a

sign nibble of 1111 (hex F). In packed BCD, the number +127 is represented as the bytes 00010010

01111100 (hex 12 7C), and −127 as 00010010 01111101 (hex 12 7D).

Sign
Digit

BCD
8 4 2 1

Sign

A 1 0 1 0 +

B 1 0 1 1 −

C 1 1 0 0 + (preferred)

D 1 1 0 1 − (preferred)

E 1 1 1 0 +

F 1 1 1 1 + (unsigned)

Page 2 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

Packing four-bit digits and a sign into eight-bit bytes means that an n-byte packed decimal value

(where n typically ranges from 1 to 15) contains 2n−1 decimal digits (which is always an odd

number of digits). In other words, d decimal digits require a packed decimal representation that is
(d+1)/2 bytes wide. For example, a four-byte packed decimal number holds seven decimal digits plus
a sign, and can represent values from ±0,000,000 to ±9,999,999.

While packed BCD does not make optimal use of storage (about 1/6 of the available memory is
wasted), conversion to ASCII, EBCDIC, or the various encodings of Unicode is still trivial, as no
arithmetic operations are required. The extra storage requirements are usually offset by the need for

the accuracy that fixed-point decimal arithmetic provides. More dense packings of BCD exist which

avoid the storage penalty and also need no arithmetic operations for common conversions.

Fixed-point packed decimal

Fixed-point decimal numbers are supported by some programming languages (such as COBOL and

PL/1), and provides an implicit decimal point in front of one of the digits. For example, a packed

decimal value encoded with the bytes 12 34 56 7C represents the fixed-point value +1,234.567 when

the implied decimal point is located between the 4th and 5th digits.

Higher-density encodings

If a decimal digit requires four bits, then three decimal digits require 12 bits. However, since

210>103, if three decimal digits are encoded together then only 10 bits are needed. Two such
encodings are Chen-Ho encoding and Densely Packed Decimal. The latter has the advantage that
subsets of the encoding encode two digits in the optimal 7 bits and one digit in 4 bits, as in regular
BCD.

Zoned decimal

Some implemenatations (notably IBM mainframe systems) support zoned decimal numeric
representations. Each decimal digit is stored in one byte, with the lower four bits encoding the digit
in BCD form. The upper four bits, called the "zone" bits, are usually set to a fixed value so that the
byte holds a character value corresponding to the digit. EBCDIC systems use a zone value of 1111
(hex F); this yields bytes in the range F0 to F9 (hex), which are the EBCDIC codes for the characters

"0" through "9". Similarly, ASCII systems use a zone value of 0011 (hex 3), giving character codes
30 to 39 (hex).

For signed zoned decimal values, the rightmost (least significant) zone nibble holds the sign digit,
which is the same set of values that are used for signed packed decimal numbers (see above). Thus a
zoned decimal value encoded as the hex bytes F1 F2 D3 represents the signed decimal value −123.

Fixed-point zone decimal

Some languages (such as COBOL and PL/1) directly support fixed-point zoned decimal values,
assiging an implicit decimal point at some location between the decimal digits of a number. For

example, given a six-byte signed zoned decimal value with an implied decimal point to the right of
the 4th digit, the hex bytes F1 F2 F7 F9 F5 C0 represent the value +1,279.50.

IBM and BCD

Page 3 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

IBM used the terms binary-coded decimal and BCD for six-bit alphameric codes that represented

numbers, upper-case letters and special characters. Some variation of BCD was used in most early

IBM computers, including the IBM 1620, IBM 1400 series and non-Decimal Architecture members
of the IBM 700/7000 series. With the introduction of System/360, IBM replaced BCD with 8-bit

EBCDIC.

Bit positions in BCD were usually labelled B, A, 8, 4, 2 and 1. For encoding digits, B and A were
zero. The letter A was encoded (B,A,1).

In the 1620 BCD alphamerics were encoded using digit pairs, with the "zone" in the even digit and

the "digit" in the odd digit. Input/Output translation hardware converted between the internal digit

pairs and the external standard six-bit BCD codes.

In the Decimal Architecture IBM 7070, IBM 7072, and IBM 7074 alphamerics were encoded using

digit pairs (using two-out-of-five code in the digits, not BCD) of the 10-digit word, with the "zone"
in the left digit and the "digit" in the right digit. Input/Output translation hardware converted

between the internal digit pairs and the external standard six-bit BCD codes.

Today, BCD is still heavily used in IBM processors and databases, such as IBM DB2.

Addition With BCD

To perform addition in BCD, you can first add-up in binary format, and then perform the conversion
to BCD afterwards. This conversion involves adding 6 to each group of four digits that has a value of
greater-than 9. For example:

� 9+6=15 = [1001] + [0110] = [1111] in binary.

However, in BCD, we cannot have a value greater-than 9 (1001) per-nibble. To correct this, one adds
6 to that group:

� 9+6 = [0000 1111] + [0000 0110] = [0001 0101]

which gives us two-nibbles, [0001] and [0101] which correspond to "1" and "5" respectively. This
gives us the 15 in BCD which is the correct result.

See also Douglas Jones' Tutorial.

Background

The binary-coded decimal scheme described in this article is the most common encoding, but there
are many others. The method here can be referred to as Simple Binary-Coded Decimal (SBCD) or

BCD 8421. In the headers to the table, the '8 4 2 1' indicates the four bit weights; note that in the 5th
column two of the weights are negative.

The following table represents decimal digits from 0 to 9 in various BCD systems:

Digit
BCD

8 4 2 1
Excess-3

or Stibitz Code
BCD 2 4 2 1

or Aiken Code
BCD

8 4 −2 −1

IBM 702 IBM 705
IBM 7080 IBM 1401

8 4 2 1

Page 4 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

Legal
history

In 1972, the U.S.

Supreme Court

overturned a lower
court decision
which had allowed

a patent for

converting BCD
encoded numbers

to binary on a

computer (see Gottschalk v Benson). This was an important case in determining the patentability of

software and algorithms.

Comparison with pure binary

Advantages

� Scaling by a factor of 10 (or a power of 10) is simple; this is useful when a decimal scaling
factor is needed to represent a non-integer quantity (e.g., in financial calculations where it is
required that a computer get the same result that a human would)

� Rounding at a decimal digit boundary is easier
� Alignment of two decimal numbers (for example 1.3 + 27.08) is a simple, exact, shift
� Conversion to a character form or for display (e.g., to a text-based format such as XML, or to

drive signals for a seven-segment display) is a simple per-digit mapping (conversion from pure
binary involves relatively complex logic that spans digits, and gets geometrically worse as the
length of the number increases).

Disadvantages

� Some operations are more complex to implement. Adders require extra logic to cause them to
wrap and generate a carry early. 15%-20% more circuitry is needed for BCD add compared to
pure binary. Multiplication requires the use of algorithms that are somewhat more complex
than shift-mask-add (a binary multiplication, requiring binary shifts and adds or the equivalent,
per-digit or group of digits is required)

� BCD in raw form requires four bits per digit. However, when packed so that three digits are
encoded in ten bits, the extra storage requirement over pure binary is insignificant for most
applications.

Representational variations

Various BCD implementations exist that employ other representations for numbers. Programmable

calculators manufactured by Texas Instruments, Hewlett-Packard, and others typically employ a
floating-point BCD format, typically with two or three digits for the (decimal) exponent. The extra
bits of the sign digit may be used to indicate special numeric values, such as infinity,

underflow/overflow, and error (a blinking display).

0 0000 0011 0000 0000 1010

1 0001 0100 0001 0111 0001

2 0010 0101 0010 0110 0010

3 0011 0110 0011 0101 0011

4 0100 0111 0100 0100 0100

5 0101 1000 1011 1011 0101

6 0110 1001 1100 1010 0110

7 0111 1010 1101 1001 0111

8 1000 1011 1110 1000 1000

9 1001 1100 1111 1111 1001

Page 5 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

� This page was last modified 06:46, 25 March 2007.
� All text is available under the terms of the GNU Free Documentation License. (See

Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501
(c)(3) tax-deductible nonprofit charity.

See also

� Chen-Ho encoding
� Densely Packed Decimal
� Gray code

External links

� Erik Østergaard’s BCD page
� IBM: Chen-Ho encoding
� IBM: Densely Packed Decimal.

References

� Arithmetic Operations in Digital Computers, R. K. Richards, 397pp, D. Van Nostrand Co.,
NY, 1955

� Schmid, Hermann, Decimal computation, ISBN 047176180X, 266pp, Wiley, 1974
� Superoptimizer: A Look at the Smallest Program, Henry Massalin, ACM Sigplan Notices,

Vol. 22 #10 (Proceedings of the Second International Conference on Architectual support for
Programming Languages and Operating Systems), pp122-126, ACM, also IEEE Computer
Society Press #87CH2440-6, October 1987

� VLSI designs for redundant binary-coded decimal addition, Behrooz Shirazi, David Y. Y.
Yun, and Chang N. Zhang, IEEE Seventh Annual International Phoenix Conference on
Computers and Communications, 1988, pp52-56, IEEE, March 1988

� Fundamentals of Digital Logic by Brown and Vranesic, 2003
� Modified Carry Look Ahead BCD Adder With CMOS and Reversible Logic Implementation,

Himanshu Thapliyal and Hamid R. Arabnia, Proceedings of the 2006 International Conference
on Computer Design (CDES'06), ISBN 1-60132-009-4, pp64-69, CSREA Press, November
2006

� Reversible Implementation of Densely-Packed-Decimal Converter to and from Binary-Coded-
Decimal Format Using in IEEE-754R, A. Kaivani, A. Zaker Alhosseini, S. Gorgin, and M.
Fazlali, 9th International Conference on Information Technology (ICIT'06), pp273-276, IEEE,
December 2006.

See also the Decimal Arithmetic Bibliography

Retrieved from "http://en.wikipedia.org/wiki/Binary-coded_decimal"

Categories: Articles with unsourced statements since March 2007 | All articles with unsourced
statements | Computer arithmetic | Numeration

Page 6 of 6Binary-coded decimal - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Binary-coded_decimal

Mask (computing)

From Wikipedia, the free encyclopedia

In computer science, a mask is some data that, along with an operation, is used in order to extract

information stored elsewhere.

The most common mask used, also known as a bitmask, extracts the status of certain bits in a binary

string or number. For example, if we have the binary string 10011101 and we want to extract the

status of the fifth bit counting along from the most significant bit, we would use a bitmask such as

00001000 and use the bitwise AND operator. Recalling that 1 AND 1 = 1, with 0 otherwise, we find

the status of the fifth bit, since

Likewise we can set the fifth bit by applying the mask to the data using the OR operator.

Similarly, we can use a sequence of binary numbers with a piece of data of equal length used to

inform as to what parts of the data should be examined. With the bitwise operation (NOT X) AND Y,

a 1 in the mask (X) instructs that the binary datum below (Y) should be ignored, while 0s in the mask

(X) tell that the data below (Y) are to be examined. A common type of mask of this type is a

subnetwork mask, which is associated with a device's IP address and used to instruct a router which

bits of the address indicate the subdivision of the network the computer is on and which identify the

specific computer within the subnetwork.

Common bitmask functions

Masking bits to 1

To turn certain bits on, we use the bitwise OR operation. Recall that Y or 1 = 1 and Y or 0 = Y.

Therefore, to make sure a bit is on, we OR it with a 1. To leave a bit alone, we OR it with a 0 .

Masking bits to 0

As we see above, there is no way to change a bit from on to off using the OR operation. Instead, we

use bitwise AND. When a value is ANDed with a 1, the result is simply the original value, as in: Y AND

1 = Y. However, when we AND a value with 0, we are guaranteed to get a 0 back so we can turn a bit

off by ANDing it with 0: Y AND 0 = 0. To leave the other bits alone, simply AND them with a 1.

10011101 AND 00001000 = 00001000

Contents

� 1 Common bitmask functions
� 1.1 Masking bits to 1
� 1.2 Masking bits to 0
� 1.3 Querying the status of a bit
� 1.4 Toggling bit values

� 2 Arguments to functions
� 3 See Also

Page 1 of 3Mask (computing) - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Mask_(computing)

Querying the status of a bit

You can also use bitmasks to easily check the state of individual bits regardless of the other bits. To

do this, you simply turn off all the other bits using the bitwise AND as discussed above and see if the

resulting value is 0. If it is, then the bit was off, but if the value is any other value, then the bit was

on. What makes this so convenient is that you do not need to figure out what the value actually is,

you just need to know that it is not 0.

Toggling bit values

So far we have seen how to turn bits on and turn bits off, but not both at once. What if we do not

really care what the value is, we just know we want it to be the opposite of what it currently is? We

can do this using the XOR (exclusive or) operation. XOR returns 1 if and only if an odd number of bits

are 1. Therefore, if two corresponding bits are 1, the result will be a 0, but if only one of them is 1,

the result will be 1. Therefore we can invert the values of bits by XORing them with a 1. If the

original bit was 1, we will get 1 XOR 1 = 0. If the original bit was 0 we will get 0 XOR 1 = 1. Also

note that XOR masking is bit-safe, meaning it will not affect unmasked bits because Y XOR 0 = Y,

just like an OR.

Arguments to functions

In programming languages such as C, bit masks are a useful way to pass a set of named boolean

arguments to a function. For example, in the graphics API OpenGL, there is a command, glClear()

which clears the screen or other buffers. It can clear up to four buffers (the color, depth,

accumulation, and stencil buffers), so the API authors could have had it take four arguments. But

then a call to it would look like

which is not very descriptive. Instead there are four defined bit fields, GL_COLOR_BUFFER_BIT,

GL_DEPTH_BUFFER_BIT, GL_ACCUM_BUFFER_BIT, and GL_STENCIL_BUFFER_BIT and glClear() is

declared as

Then a call to the function looks like this

Internally, a function taking a bitfield like this can use logical and to extract the individual bits. For

example, an implementation of glClear() might look like

glClear(1,1,0,0); // This is not how glClear actually works and would make for unreadable code.

void glClear(GLbitfield mask);

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Page 2 of 3Mask (computing) - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Mask_(computing)

� This page was last modified 23:13, 28 January 2007.
� All text is available under the terms of the GNU Free Documentation License. (See

Copyrights for details.)
Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a US-registered 501
(c)(3) tax-deductible nonprofit charity.

While elegant, in the simplest implementation this solution is not type-safe. A GLbitfield is simply

defined to be an unsigned int, so the compiler would allow a meaningless call to glClear(42) or

even glClear(GL_POINTS). In C++ an alternative would be to create a class to encapsulate the set of

arguments that glClear can accept. However, such an attempt at type safety would be at the cost of

complexity.

See Also

� Affinity mask
� Subnetwork

Retrieved from "http://en.wikipedia.org/wiki/Mask_%28computing%29"

Category: Computer arithmetic

void glClear(GLbitfield mask) {

 if (mask & GL_COLOR_BUFFER_BIT) {

 // Clear color buffer.

 }

 if (mask & GL_DEPTH_BUFFER_BIT) {

 // Clear depth buffer.

 }

 if (mask & GL_ACCUM_BUFFER_BIT) {

 // Clear accumulation buffer.

 }

 if (mask & GL_STENCIL_BUFFER_BIT) {

 // Clear stencil buffer.

 }

}

Page 3 of 3Mask (computing) - Wikipedia, the free encyclopedia

http://en.wikipedia.org/wiki/Mask_(computing)

DATA SHEET

 Page 1 of
The enclosed information is believed to be correct, Information may change ‘without notice’ due to
product improvement. Users should ensure that the product is suitable for their use. E. & O. E.

Revision A
04/07/2003

Sales: 01206 751166 Technical: 01206 835555 Fax: 01206 7551188

Sales@rapidelec.co.uk Tech@rapidelec.co.uk www.rapidelectronics.co.uk

LCD's and Accessories

LCD's and AccessoriesLCD's and AccessoriesLCD's and AccessoriesLCD's and Accessories
Order codeOrder codeOrder codeOrder code Manufacturer codeManufacturer codeManufacturer codeManufacturer code DescriptionDescriptionDescriptionDescription

57-0913 n/a 16X2 ALPHANUMERIC LCD DISPLAY B/L (RC)

2

The tolerance unless classified 0.3mm

LCD option: STN, TN, FSTN
Backlight Option: LED,EL Backlight feature, other Specs not available on catalog is under request.

OUTLINE DIMENSION & BLOCK DIAGRAM

MECHANICAL SPECIFICATION
Overall Size
View Area
Dot Size
Dot Pitch

122.0 x 44.0
99.0 x 24.0
0.92 x 1.10
0.98 x 1.16

Module
W /O B/L

EL B/L
LED B/L

H2 / H1
4.9 / 9.0
4.9 / 9.0
9.4 / 13.5

Vdd+0.3

V
V
V

13
7

Item
Supply for logic voltage

LCD driving supply voltage

Input voltage

Vdd-Vss
Vdd-Vee

Vin

25oC
25oC
25oC

-0.3
-0.3

-0.3

Symbol Condition Min. Max. Units
ABSOLUTE MAXIMUM RATING

Item

LCD operation voltage

LCM current consumption (No B/L)

Backlight current consumption

Symbol Min.Condition

Vop

Idd

LED/edge VB/L=4.2V

LED/array

Top
-20oC

0oC

25oC

50oC

70oC

VB/L=4.2V

N W
7.1

4.5

4.1

Vdd=5V

4

5.7

6.1

ELECTRICAL CHARACTERISTICS
Typical

N W

Max. Units

V

4.7

4.5

4.4

7.9

6.7

6.3

V

V
V
V
V

mA
mA
mA

3

N W
7.5

4.5

4.3

4.2

6

6.4

PIN ASSIGNMENT

Pin no. Symbol Function

1
2

3

4

5

6
7
8

9

10

11

12

13
14

Vss
Vdd

Vo

RS

R/W

E

DB0
DB1

DB2

DB3

DB4
DB5

DB6

DB7

Power supply(GND)

Power supply(+)

Contrast Adjust

Register select signal

Data read / write

Enable signal

Data bus line
Data bus line
Data bus line

Data bus line

Data bus line

Data bus line
Data bus line
Data bus line

2

360

Power supply voltage Vdd-Vss 25oC V2.7 5.5

PC 1602-LPC 1602-L

120

LCD PANEL

BACKLIGHT

SEG 40

COM 16
LCD
CONTROLLER
LSI

DB7

DB0

E
R/W

RS
Vss

Vdd
Vo

A
K

6.0
4.84

0.06
0.92

0.
069.
66

10
.3

4

1.
1

CONTROL SIGNALS 4
SEGMENT DRIVER

SEG 40

8.
06

0.
5

1.6

H2

H1

6.
0

4- 3.5

44
.0

0.

5

36
.0

24
.0

20
.0

K

A

8- 1.0

115.0

122.0 0.5

P2.54 x 13=33.02

14- 1.0

3.5

11.0

1.8

K

A
3.5

94.84
99.0

106.57.75

3.
5

37
.0

24
.0

18
.0

2.
5

12
.0

David Piggott - Heavy Sleeper’s Alarm Clock

221

Appendix B (Case Dimensioning Sketches, Program planning)

Sheet 1
 Sides 1 & 2: Rough work done when troubleshooting program around BCD realisation point.

Sheet 2
Side 1: Early schematic (drawn when away from PC).

Side 2: Planning and calculation for breadboard program.

Sheet 3
Sides 1 & 2: Planning for flow of breadboard program.

Sheet 4
Sides 1 & 2: Planning for optimisation of final program to make best use of available program space and byte variables (table on side 2

was to be a plan of the multiple uses of the byte variables throughout the program however I found it easy enough to work without it, hence

incomplete).

Sheet 5
Side 1: Planning for optimisation of final program to make best use of available program space and byte variables.

Sheet 6
Side 1: Dimensions of electronics components for use dimensioning case.

Side 2: Case dimension ideas.

Sheet 7 - 9
Further casing ideas.

Sheet 10
Dimensioning ideas.

